These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30927822)

  • 61. Non-optical tip-sample distance control method for scanning near-field optical microscopy using a piezoresistive micro cantilever.
    Muramatsu H; Egawa A; Homma K; Kim JM; Takahashi H; Shirakawabe Y; Shimizu N
    J Microsc; 2001 Apr; 202(Pt 1):154-61. PubMed ID: 11298886
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy.
    Nalladega V; Sathish S; Jata KV; Blodgett MP
    Rev Sci Instrum; 2008 Jul; 79(7):073705. PubMed ID: 18681706
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reconstructing the distributed force on an atomic force microscope cantilever.
    Wagner R; Killgore J
    Nanotechnology; 2017 Mar; 28(10):104002. PubMed ID: 28085006
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Quantifying nanoscale forces using machine learning in dynamic atomic force microscopy.
    Chandrashekar A; Belardinelli P; Bessa MA; Staufer U; Alijani F
    Nanoscale Adv; 2022 May; 4(9):2134-2143. PubMed ID: 35601812
    [TBL] [Abstract][Full Text] [Related]  

  • 66. How Precisely Can Individual Molecules Be Analyzed? A Case Study on Locally Quantifying Forces and Energies Using Scanning Probe Microscopy.
    Wang X; Zahl P; Wang H; Altman EI; Schwarz UD
    ACS Nano; 2024 Feb; 18(5):4495-4506. PubMed ID: 38265359
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy.
    Wang K; Cheng J; Yao S; Lu Y; Ji L; Xu D
    Nanoscale Res Lett; 2016 Dec; 11(1):548. PubMed ID: 27957727
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.
    Balke N; Jesse S; Yu P; Ben Carmichael ; Kalinin SV; Tselev A
    Nanotechnology; 2016 Oct; 27(42):425707. PubMed ID: 27631885
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Tip-jump response of an amplitude-modulated Atomic Force Microscope.
    Shih PJ
    Sensors (Basel); 2012; 12(5):6666-84. PubMed ID: 22778663
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction.
    Baykara MZ; Dagdeviren OE; Schwendemann TC; Mönig H; Altman EI; Schwarz UD
    Beilstein J Nanotechnol; 2012; 3():637-50. PubMed ID: 23019560
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dynamic spring constants for higher flexural modes of cantilever plates with applications to atomic force microscopy.
    Hähner G
    Ultramicroscopy; 2010 Jun; 110(7):801-6. PubMed ID: 20188476
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tip-to-sample distance dependence of an electrostatic force in KFM measurements.
    Takahashi T; Ono S
    Ultramicroscopy; 2004 Aug; 100(3-4):287-92. PubMed ID: 15231321
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Atom-resolved analysis of an ionic KBr(001) crystal surface covered with a thin water layer by frequency modulation atomic force microscopy.
    Arai T; Koshioka M; Abe K; Tomitori M; Kokawa R; Ohta M; Yamada H; Kobayashi K; Oyabu N
    Langmuir; 2015 Apr; 31(13):3876-83. PubMed ID: 25790119
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications.
    Morawski I; Spiegelberg R; Korte S; Voigtländer B
    Rev Sci Instrum; 2015 Dec; 86(12):123703. PubMed ID: 26724038
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of the interaction between AFM tips and surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2014 Jun; 30(24):7112-26. PubMed ID: 24856074
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.
    Martínez NF; García R
    Nanotechnology; 2006 Apr; 17(7):S167-72. PubMed ID: 21727409
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Photothermal excitation and laser Doppler velocimetry of higher cantilever vibration modes for dynamic atomic force microscopy in liquid.
    Nishida S; Kobayashi D; Sakurada T; Nakazawa T; Hoshi Y; Kawakatsu H
    Rev Sci Instrum; 2008 Dec; 79(12):123703. PubMed ID: 19123565
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wear-less floating contact imaging of polymer surfaces.
    Knoll A; Rothuizen H; Gotsmann B; Duerig U
    Nanotechnology; 2010 May; 21(18):185701. PubMed ID: 20378942
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Limitations on accurate shape determination using amplitude modulation atomic force microscopy.
    Eves BJ; Green RG
    Ultramicroscopy; 2012 Apr; 115():14-20. PubMed ID: 22459113
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition.
    Kinoshita Y; Naitoh Y; Li YJ; Sugawara Y
    Rev Sci Instrum; 2011 Nov; 82(11):113707. PubMed ID: 22128984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.