These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 30927852)

  • 1. Rare event simulation for steady-state probabilities via recurrency cycles.
    Bisewski K; Crommelin D; Mandjes M
    Chaos; 2019 Mar; 29(3):033131. PubMed ID: 30927852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating rare events in biochemical systems using conditional sampling.
    Sundar VS
    J Chem Phys; 2017 Jan; 146(4):044117. PubMed ID: 28147534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite state projection method for steady-state sensitivity analysis of stochastic reaction networks.
    Dürrenberger P; Gupta A; Khammash M
    J Chem Phys; 2019 Apr; 150(13):134101. PubMed ID: 30954061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifidelity Analysis for Predicting Rare Events in Stochastic Computational Models of Complex Biological Systems.
    Pienaar E
    Biomed Eng Comput Biol; 2018; 9():1179597218790253. PubMed ID: 30090024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On computer-intensive simulation and estimation methods for rare-event analysis in epidemic models.
    Clémençon S; Cousien A; Felipe MD; Tran VC
    Stat Med; 2015 Dec; 34(28):3696-713. PubMed ID: 26242476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks.
    Ching WK; Zhang S; Ng MK; Akutsu T
    Bioinformatics; 2007 Jun; 23(12):1511-8. PubMed ID: 17463027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes.
    Pooley CM; Bishop SC; Marion G
    J R Soc Interface; 2015 Jun; 12(107):. PubMed ID: 25994297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian inference in a hidden stochastic two-compartment model for feline hematopoiesis.
    Golinelli D; Guttorp P; Abkowitz JA
    Math Med Biol; 2006 Sep; 23(3):153-72. PubMed ID: 16567362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks.
    Mariño IP; Zaikin A; Míguez J
    PLoS One; 2017; 12(8):e0182015. PubMed ID: 28797087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stochastic hybrid systems based framework for modeling dependent failure processes.
    Fan M; Zeng Z; Zio E; Kang R; Chen Y
    PLoS One; 2017; 12(2):e0172680. PubMed ID: 28231313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete-time stochastic modeling and simulation of biochemical networks.
    Sandmann W
    Comput Biol Chem; 2008 Aug; 32(4):292-7. PubMed ID: 18499525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian phylogeny analysis via stochastic approximation Monte Carlo.
    Cheon S; Liang F
    Mol Phylogenet Evol; 2009 Nov; 53(2):394-403. PubMed ID: 19589389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models.
    Wanduku D
    Heliyon; 2022 Dec; 8(12):e12622. PubMed ID: 36643325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A markov model based analysis of stochastic biochemical systems.
    Ghosh P; Ghosh S; Basu K; Das SK
    Comput Syst Bioinformatics Conf; 2007; 6():121-32. PubMed ID: 17951818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An adaptive multi-level simulation algorithm for stochastic biological systems.
    Lester C; Yates CA; Giles MB; Baker RE
    J Chem Phys; 2015 Jan; 142(2):024113. PubMed ID: 25591344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations.
    Arampatzis G; Katsoulakis MA
    J Chem Phys; 2014 Mar; 140(12):124108. PubMed ID: 24697425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jump Markov models and transition state theory: the quasi-stationary distribution approach.
    Di Gesù G; Lelièvre T; Le Peutrec D; Nectoux B
    Faraday Discuss; 2016 Dec; 195():469-495. PubMed ID: 27740662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Path ensembles and path sampling in nonequilibrium stochastic systems.
    Harland B; Sun SX
    J Chem Phys; 2007 Sep; 127(10):104103. PubMed ID: 17867733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical approach for evaluating Markov models in continuous time without discrete-event simulation.
    van Rosmalen J; Toy M; O'Mahony JF
    Med Decis Making; 2013 Aug; 33(6):767-79. PubMed ID: 23715464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.