These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30927891)

  • 1. Modeling optical coupling of plasmons and inhomogeneously broadened emitters.
    Purcell TAR; Sukharev M; Seideman T
    J Chem Phys; 2019 Mar; 150(12):124112. PubMed ID: 30927891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving single plasmons generated by multiquantum-emitters on a silver nanowire.
    Li Q; Wei H; Xu H
    Nano Lett; 2014 Jun; 14(6):3358-63. PubMed ID: 24844583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].
    Jin M; Huang YH; Luo JX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Feb; 35(2):420-3. PubMed ID: 25970904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical absorption spectroscopy in hybrid systems of plasmons and excitons.
    Lai CY; Trugman SA; Zhu JX
    Nanoscale; 2019 Jan; 11(4):2037-2047. PubMed ID: 30644944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Linear Optical Properties of Biexciton in Ellipsoidal Quantum Dot.
    Bleyan YY; Mantashyan PA; Kazaryan EM; Sarkisyan HA; Accorsi G; Baskoutas S; Hayrapetyan DB
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.
    Dey S; Zhao J
    J Phys Chem Lett; 2016 Aug; 7(15):2921-9. PubMed ID: 27411778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positioning of quantum dots on metallic nanostructures.
    Kramer RK; Pholchai N; Sorger VJ; Yim TJ; Oulton R; Zhang X
    Nanotechnology; 2010 Apr; 21(14):145307. PubMed ID: 20234079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of quantum dots coupled to plasmons and optical cavities.
    Westmoreland DE; McClelland KP; Perez KA; Schwabacher JC; Zhang Z; Weiss EA
    J Chem Phys; 2019 Dec; 151(21):210901. PubMed ID: 31822081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a multiple-quantum-dots embedded ring structure for potential optically-controlled quantum switch or spin filter.
    He Z; Zhao X; Chen K; Bai J; Guo Y
    Sci Rep; 2020 Oct; 10(1):16280. PubMed ID: 33004924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum: "Modeling optical coupling of plasmons and inhomogeneously broadened emitters" [J. Chem. Phys. 150, 124112 (2019)].
    Purcell TAR; Sukharev M; Seideman T
    J Chem Phys; 2019 Jun; 150(21):219904. PubMed ID: 31176336
    [No Abstract]   [Full Text] [Related]  

  • 12. Semiclassical transport in nearly symmetric quantum dots. I. Symmetry breaking in the dot.
    Whitney RS; Schomerus H; Kopp M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056209. PubMed ID: 20365062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting.
    Pelton M; Storm SD; Leng H
    Nanoscale; 2019 Aug; 11(31):14540-14552. PubMed ID: 31364684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic coupling of quantum emitters in WSe
    Iff O; Lundt N; Betzold S; Tripathi LN; Emmerling M; Tongay S; Lee YJ; Kwon SH; Höfling S; Schneider C
    Opt Express; 2018 Oct; 26(20):25944-25951. PubMed ID: 30469688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast energy transfer between molecular assemblies and surface plasmons in the strong coupling regime.
    Sukharev M; Seideman T; Gordon RJ; Salomon A; Prior Y
    ACS Nano; 2014 Jan; 8(1):807-17. PubMed ID: 24295332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonics in atomically thin materials.
    García de Abajo FJ; Manjavacas A
    Faraday Discuss; 2015; 178():87-107. PubMed ID: 25774774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibrating and controlling the quantum efficiency distribution of inhomogeneously broadened quantum rods by using a mirror ball.
    Lunnemann P; Rabouw FT; van Dijk-Moes RJ; Pietra F; Vanmaekelbergh D; Koenderink AF
    ACS Nano; 2013 Jul; 7(7):5984-92. PubMed ID: 23802654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum surface effects in the electromagnetic coupling between a quantum emitter and a plasmonic nanoantenna: time-dependent density functional theory vs. semiclassical Feibelman approach.
    Babaze A; Ogando E; Elli Stamatopoulou P; Tserkezis C; Asger Mortensen N; Aizpurua J; Borisov AG; Esteban R
    Opt Express; 2022 Jun; 30(12):21159-21183. PubMed ID: 36224842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.