These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30927902)

  • 1. Mode-coupling theory for the steady-state dynamics of active Brownian particles.
    Szamel G
    J Chem Phys; 2019 Mar; 150(12):124901. PubMed ID: 30927902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory for the dynamics of dense systems of athermal self-propelled particles.
    Szamel G
    Phys Rev E; 2016 Jan; 93(1):012603. PubMed ID: 26871118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mode-coupling theory for the dynamics of dense underdamped active Brownian particle system.
    Feng M; Hou Z
    J Chem Phys; 2023 Jan; 158(2):024102. PubMed ID: 36641396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of interacting Brownian particles: a diagrammatic formulation.
    Szamel G
    J Chem Phys; 2007 Aug; 127(8):084515. PubMed ID: 17764277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium mode-coupling theory for uniformly sheared systems.
    Chong SH; Kim B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021203. PubMed ID: 19391732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glassy dynamics of Brownian particles with velocity-dependent friction.
    Yazdi A; Sperl M
    Phys Rev E; 2016 Sep; 94(3-1):032602. PubMed ID: 27739784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical calculation of four-point correlations for a simple model of cages involving numerous particles.
    Takeshi O; Goto S; Matsumoto T; Nakahara A; Otsuki M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062108. PubMed ID: 24483387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracer dynamics in crowded active-particle suspensions.
    Reichert J; Voigtmann T
    Soft Matter; 2021 Dec; 17(46):10492-10504. PubMed ID: 34751290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glassy dynamics of athermal self-propelled particles: Computer simulations and a nonequilibrium microscopic theory.
    Szamel G; Flenner E; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062304. PubMed ID: 26172716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions.
    Steffenoni S; Falasco G; Kroy K
    Phys Rev E; 2017 May; 95(5-1):052142. PubMed ID: 28618517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-body correlations and conditional forces in suspensions of active hard disks.
    Härtel A; Richard D; Speck T
    Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power functional theory for active Brownian particles: General formulation and power sum rules.
    Krinninger P; Schmidt M
    J Chem Phys; 2019 Feb; 150(7):074112. PubMed ID: 30795658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a statistical mechanical theory of active fluids.
    Marini Bettolo Marconi U; Maggi C
    Soft Matter; 2015 Dec; 11(45):8768-81. PubMed ID: 26387914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Derivation of a microscopic theory of barriers and activated hopping transport in glassy liquids and suspensions.
    Schweizer KS
    J Chem Phys; 2005 Dec; 123(24):244501. PubMed ID: 16396543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent fluctuations of the swarm size of Brownian bees.
    Meerson B; Sasorov P
    Phys Rev E; 2021 Mar; 103(3-1):032140. PubMed ID: 33862785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic thermodynamics for self-propelled particles.
    Szamel G
    Phys Rev E; 2019 Nov; 100(5-1):050603. PubMed ID: 31869934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal glass transition: beyond mode-coupling theory.
    Szamel G
    Phys Rev Lett; 2003 Jun; 90(22):228301. PubMed ID: 12857344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode-coupling theory for active Brownian particles.
    Liluashvili A; Ónody J; Voigtmann T
    Phys Rev E; 2017 Dec; 96(6-1):062608. PubMed ID: 29347410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.