These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30928059)

  • 1. Perturbation effect of parallel-plate ionization chambers on buildup dose measurements in transverse magnetic fields.
    Matsuoka T; Araki F; Ohno T
    Phys Med; 2019 Mar; 59():112-116. PubMed ID: 30928059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams.
    Ono T; Araki F; Yoshiyama F
    Med Phys; 2011 Aug; 38(8):4647-54. PubMed ID: 21928637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of EGSnrc Monte Carlo calculated depth doses within a realistic parallel magnetic field in a polystyrene phantom.
    Ghila A; Steciw S; Fallone BG; Rathee S
    Med Phys; 2017 Sep; 44(9):4804-4815. PubMed ID: 28626920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality.
    Malkov VN; Rogers DWO
    Med Phys; 2018 Feb; 45(2):908-925. PubMed ID: 29218730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.
    Zink K; Wulff J
    Med Phys; 2011 Feb; 38(2):1045-54. PubMed ID: 21452742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of ionization chambers for the relative dosimetry of kilovoltage x-ray beams.
    Hill R; Mo Z; Haque M; Baldock C
    Med Phys; 2009 Sep; 36(9):3971-81. PubMed ID: 19810470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields.
    Reynolds M; Fallone BG; Rathee S
    Med Phys; 2013 Apr; 40(4):042102. PubMed ID: 23556912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetry in magnetic fields with dedicated MR-compatible ionization chambers.
    Shukla BK; Spindeldreier CK; Schrenk O; Bakenecker AC; Klüter S; Kawrakow I; Runz A; Burigo L; Karger CP; Greilich S; Pfaffenberger A
    Phys Med; 2020 Dec; 80():259-266. PubMed ID: 33220650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations.
    Spindeldreier CK; Schrenk O; Bakenecker A; Kawrakow I; Burigo L; Karger CP; Greilich S; Pfaffenberger A
    Phys Med Biol; 2017 Aug; 62(16):6708-6728. PubMed ID: 28636564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams.
    Cervantes Y; Duchaine J; Billas I; Duane S; Bouchard H
    Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34700311
    [No Abstract]   [Full Text] [Related]  

  • 12. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams.
    Verhaegen F; Zakikhani R; Dusautoy A; Palmans H; Bostock G; Shipley D; Seuntjens J
    Phys Med Biol; 2006 Mar; 51(5):1221-35. PubMed ID: 16481689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detector response in the buildup region of small MV fields.
    Wegener S; Herzog B; Sauer OA
    Med Phys; 2020 Mar; 47(3):1327-1339. PubMed ID: 31860128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-cavity chamber dose response in megavoltage photon beams coupled to magnetic fields.
    Cervantes Y; Billas I; Shipley D; Duane S; Bouchard H
    Phys Med Biol; 2020 Dec; 65(24):245008. PubMed ID: 32674077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abstract ID: 13 Monte Carlo simulations for the beam quality factors of a parallel-plate ion-chamber in the presence of magnetic field.
    Lee J; Ye SJ
    Phys Med; 2018 Jan; 45 Suppl 1():S1. PubMed ID: 29413848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: the advantage of small over large chamber dimensions.
    Looe HK; Delfs B; Poppinga D; Harder D; Poppe B
    Phys Med Biol; 2018 Mar; 63(7):075013. PubMed ID: 29516870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical Note: Experimental verification of EGSnrc calculated depth dose within a parallel magnetic field in a lung phantom.
    Ghila A; Fallone BG; Rathee S
    Med Phys; 2018 Dec; 45(12):5653-5658. PubMed ID: 30260003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo-based correction factors for ion chamber dosimetry in heterogeneous phantoms for megavoltage photon beams.
    Araki F
    Phys Med Biol; 2012 Nov; 57(22):7615-27. PubMed ID: 23103477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry.
    Araki F
    Med Phys; 2008 Sep; 35(9):4033-40. PubMed ID: 18841855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo calculations of beam quality correction factors kQ for electron dosimetry with a parallel-plate Roos chamber.
    Zink K; Wulff J
    Phys Med Biol; 2008 Mar; 53(6):1595-607. PubMed ID: 18367790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.