BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30928093)

  • 1. Structural insights into the complex of trigger factor chaperone and ribosomal protein S7 from Mycobacterium tuberculosis.
    Li Z; Wu D; Zhan B; Hu X; Gan J; Ji C; Li J
    Biochem Biophys Res Commun; 2019 May; 512(4):838-844. PubMed ID: 30928093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the yeast ribosomal protein rpS3 in complex with its chaperone Yar1.
    Holzer S; Ban N; Klinge S
    J Mol Biol; 2013 Nov; 425(22):4154-60. PubMed ID: 24021814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone.
    Martinez-Hackert E; Hendrickson WA
    Cell; 2009 Sep; 138(5):923-34. PubMed ID: 19737520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor.
    Hosaka H; Nakagawa A; Tanaka I; Harada N; Sano K; Kimura M; Yao M; Wakatsuki S
    Structure; 1997 Sep; 5(9):1199-208. PubMed ID: 9331423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction.
    Schlünzen F; Wilson DN; Tian P; Harms JM; McInnes SJ; Hansen HA; Albrecht R; Buerger J; Wilbanks SM; Fucini P
    Structure; 2005 Nov; 13(11):1685-94. PubMed ID: 16271892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of ribosomal protein S7 at 1.9 A resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids.
    Wimberly BT; White SW; Ramakrishnan V
    Structure; 1997 Sep; 5(9):1187-98. PubMed ID: 9331418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Analysis of Mycobacterium tuberculosis Homologues of the Eukaryotic Proteasome Assembly Chaperone 2 (PAC2).
    Bai L; Jastrab JB; Isasa M; Hu K; Yu H; Gygi SP; Darwin KH; Li H
    J Bacteriol; 2017 May; 199(9):. PubMed ID: 28193903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic and solution structure of the N-terminal domain of the Rel protein from Mycobacterium tuberculosis.
    Singal B; Balakrishna AM; Nartey W; Manimekalai MSS; Jeyakanthan J; Grüber G
    FEBS Lett; 2017 Aug; 591(15):2323-2337. PubMed ID: 28672070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization and preliminary X-ray crystallographic analysis of a Mycobacterium tuberculosis ferritin homolog, BfrB.
    McMath LM; Habel JE; Sankaran B; Yu M; Hung LW; Goulding CW
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Dec; 66(Pt 12):1657-61. PubMed ID: 21139218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis.
    Reddy BG; Moates DB; Kim HB; Green TJ; Kim CY; Terwilliger TC; DeLucas LJ
    Acta Crystallogr F Struct Biol Commun; 2014 Apr; 70(Pt 4):414-7. PubMed ID: 24699730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into species-specific features of the ribosome from the human pathogen Mycobacterium tuberculosis.
    Yang K; Chang JY; Cui Z; Li X; Meng R; Duan L; Thongchol J; Jakana J; Huwe CM; Sacchettini JC; Zhang J
    Nucleic Acids Res; 2017 Oct; 45(18):10884-10894. PubMed ID: 28977617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray structural studies of Mycobacterium tuberculosis RRF and a comparative study of RRFs of known structure. Molecular plasticity and biological implications.
    Saikrishnan K; Kalapala SK; Varshney U; Vijayan M
    J Mol Biol; 2005 Jan; 345(1):29-38. PubMed ID: 15567408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and thermodynamic characterization of the transcription antitermination factor NusE and its interaction with NusB from Mycobacterium tuberculosis.
    Gopal B; Papavinasasundaram KG; Dodson G; Colston MJ; Major SA; Lane AN
    Biochemistry; 2001 Jan; 40(4):920-8. PubMed ID: 11170413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action.
    Baram D; Pyetan E; Sittner A; Auerbach-Nevo T; Bashan A; Yonath A
    Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12017-22. PubMed ID: 16091460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helicobacter pylori cell binding factor 2: Insights into domain motion.
    Naveen V; Chu CH; Chen BW; Tsai YC; Hsiao CD; Sun YJ
    J Struct Biol; 2016 Apr; 194(1):90-101. PubMed ID: 26850168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the archaebacterial ribosomal protein S7 and its possible interaction with 16S rRNA.
    Hosaka H; Yao M; Kimura M; Tanaka I
    J Biochem; 2001 Nov; 130(5):695-701. PubMed ID: 11686933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae.
    Ludlam AV; Moore BA; Xu Z
    Proc Natl Acad Sci U S A; 2004 Sep; 101(37):13436-41. PubMed ID: 15353602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for protection of ribosomal protein L4 from cellular degradation.
    Huber FM; Hoelz A
    Nat Commun; 2017 Feb; 8():14354. PubMed ID: 28148929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure and backbone dynamics for S1 domain of ribosomal protein S1 from Mycobacterium tuberculosis.
    Huang B; Fan S; Liu Y; Zhao Y; Lin D; Liao X
    Eur Biophys J; 2019 Sep; 48(6):491-501. PubMed ID: 31165910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol.
    Kumar A; Balakrishna AM; Nartey W; Manimekalai MSS; Grüber G
    Free Radic Biol Med; 2016 Aug; 97():588-601. PubMed ID: 27417938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.