BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30928400)

  • 1. Human and murine steroid 5β-reductases (AKR1D1 and AKR1D4): insights into the role of the catalytic glutamic acid.
    Chen M; Wangtrakuldee P; Zang T; Duan L; Gathercole LL; Tomlinson JW; Penning TM
    Chem Biol Interact; 2019 May; 305():163-170. PubMed ID: 30928400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering steroid hormone specificity into aldo-keto reductases.
    Penning TM; Ma H; Jez JM
    Chem Biol Interact; 2001 Jan; 130-132(1-3):659-71. PubMed ID: 11306084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of human steroid 5β-reductase (AKR1D1) into 3β-hydroxysteroid dehydrogenase by single point mutation E120H: example of perfect enzyme engineering.
    Chen M; Drury JE; Christianson DW; Penning TM
    J Biol Chem; 2012 May; 287(20):16609-22. PubMed ID: 22437839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereospecific reduction of 5β-reduced steroids by human ketosteroid reductases of the AKR (aldo-keto reductase) superfamily: role of AKR1C1-AKR1C4 in the metabolism of testosterone and progesterone via the 5β-reductase pathway.
    Jin Y; Mesaros AC; Blair IA; Penning TM
    Biochem J; 2011 Jul; 437(1):53-61. PubMed ID: 21521174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1).
    Chen M; Penning TM
    Steroids; 2014 May; 83():17-26. PubMed ID: 24513054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human 3alpha-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones.
    Penning TM; Burczynski ME; Jez JM; Hung CF; Lin HK; Ma H; Moore M; Palackal N; Ratnam K
    Biochem J; 2000 Oct; 351(Pt 1):67-77. PubMed ID: 10998348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and catalytic mechanism of human steroid 5beta-reductase (AKR1D1).
    Di Costanzo L; Drury JE; Christianson DW; Penning TM
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):191-8. PubMed ID: 18848863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human dehydrogenase/reductase SDR family member 11 (DHRS11) and aldo-keto reductase 1C isoforms in comparison: Substrate and reaction specificity in the reduction of 11-keto-C
    Endo S; Morikawa Y; Kudo Y; Suenami K; Matsunaga T; Ikari A; Hara A
    J Steroid Biochem Mol Biol; 2020 May; 199():105586. PubMed ID: 31926269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.
    Rižner TL; Penning TM
    Steroids; 2014 Jan; 79():49-63. PubMed ID: 24189185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes.
    Penning TM; Wangtrakuldee P; Auchus RJ
    Endocr Rev; 2019 Apr; 40(2):447-475. PubMed ID: 30137266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The aldo-keto reductases (AKRs): Overview.
    Penning TM
    Chem Biol Interact; 2015 Jun; 234():236-46. PubMed ID: 25304492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of 3 alpha-hydroxysteroid dehydrogenase.
    Penning TM; Bennett MJ; Smith-Hoog S; Schlegel BP; Jez JM; Lewis M
    Steroids; 1997 Jan; 62(1):101-11. PubMed ID: 9029723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rate-determining steps of aldo-keto reductases (AKRs), a study on human steroid 5β-reductase (AKR1D1).
    Chen M; Jin Y; Penning TM
    Chem Biol Interact; 2015 Jun; 234():360-5. PubMed ID: 25500266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular determinants of steroid recognition and catalysis in aldo-keto reductases. Lessons from 3alpha-hydroxysteroid dehydrogenase.
    Penning TM
    J Steroid Biochem Mol Biol; 1999; 69(1-6):211-25. PubMed ID: 10418995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The altered specificity of cortisone reductase with certain retroandrostan-3-one substrates.
    Gibb W; Jeffery J
    Biochem J; 1975 Mar; 145(3):483-9. PubMed ID: 168869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of human liver Delta4-3-ketosteroid 5beta-reductase (AKR1D1) and implications for substrate binding and catalysis.
    Di Costanzo L; Drury JE; Penning TM; Christianson DW
    J Biol Chem; 2008 Jun; 283(24):16830-9. PubMed ID: 18407998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency.
    Chen M; Jin Y; Penning TM
    Biochemistry; 2015 Oct; 54(41):6343-51. PubMed ID: 26418565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of human Delta4-3-ketosteroid 5beta-reductase defines the functional role of the residues of the catalytic tetrad in the steroid double bond reduction mechanism.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Aug; 47(32):8261-70. PubMed ID: 18624455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promiscuity and diversity in 3-ketosteroid reductases.
    Penning TM; Chen M; Jin Y
    J Steroid Biochem Mol Biol; 2015 Jul; 151():93-101. PubMed ID: 25500069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis.
    Jin Y; Chen M; Penning TM
    Biochem J; 2014 Aug; 462(1):163-71. PubMed ID: 24894951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.