These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 30928508)

  • 41. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs.
    Pasquali S; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(4):1384-98. PubMed ID: 15745998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Seeing the results of a mutation with a vertex weighted hierarchical graph.
    Knisley DJ; Knisley JR
    BMC Proc; 2014; 8(Suppl 2 Proceedings of the 3rd Annual Symposium on Biologica):S7. PubMed ID: 25237394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mining the Enriched Subgraphs for Specific Vertices in a Biological Graph.
    Meysman P; Saeys Y; Sabaghian E; Bittremieux W; Van de Peer Y; Goethals B; Laukens K
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1496-1507. PubMed ID: 27295680
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SING: subgraph search in non-homogeneous graphs.
    Di Natale R; Ferro A; Giugno R; Mongiovì M; Pulvirenti A; Shasha D
    BMC Bioinformatics; 2010 Feb; 11():96. PubMed ID: 20170516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Classifying multigraph models of secondary RNA structure using graph-theoretic descriptors.
    Knisley D; Knisley J; Ross C; Rockney A
    ISRN Bioinform; 2012; 2012():157135. PubMed ID: 25969746
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heuristics for chemical compound matching.
    Hattori M; Okuno Y; Goto S; Kanehisa M
    Genome Inform; 2003; 14():144-53. PubMed ID: 15706529
    [TBL] [Abstract][Full Text] [Related]  

  • 47. FlexGraph: Flexible partitioning and storage for scalable graph mining.
    Park C; Park HM; Kang U
    PLoS One; 2020; 15(1):e0227032. PubMed ID: 31978075
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stochastic modeling of RNA pseudoknotted structures: a grammatical approach.
    Cai L; Malmberg RL; Wu Y
    Bioinformatics; 2003; 19 Suppl 1():i66-73. PubMed ID: 12855439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction.
    Bayrak CS; Kim N; Schlick T
    Nucleic Acids Res; 2017 May; 45(9):5414-5422. PubMed ID: 28158755
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Going beyond base-pairs: topology-based characterization of base-multiplets in RNA.
    Bhattacharya S; Jhunjhunwala A; Halder A; Bhattacharyya D; Mitra A
    RNA; 2019 May; 25(5):573-589. PubMed ID: 30792229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A dynamic programming algorithm for RNA structure prediction including pseudoknots.
    Rivas E; Eddy SR
    J Mol Biol; 1999 Feb; 285(5):2053-68. PubMed ID: 9925784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel representation of RNA secondary structure based on element-contact graphs.
    Shu W; Bo X; Zheng Z; Wang S
    BMC Bioinformatics; 2008 Apr; 9():188. PubMed ID: 18402706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
    Reeder J; Giegerich R
    BMC Bioinformatics; 2004 Aug; 5():104. PubMed ID: 15294028
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence.
    Rødland EA
    J Comput Biol; 2006; 13(6):1197-213. PubMed ID: 16901237
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs.
    Hartsperger ML; Blöchl F; Stümpflen V; Theis FJ
    BMC Bioinformatics; 2010 Oct; 11():522. PubMed ID: 20961418
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient RNA structure comparison algorithms.
    Arslan AN; Anandan J; Fry E; Monschke K; Ganneboina N; Bowerman J
    J Bioinform Comput Biol; 2017 Dec; 15(6):1740009. PubMed ID: 29113560
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of consensus RNA secondary structures including pseudoknots.
    Witwer C; Hofacker IL; Stadler PF
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(2):66-77. PubMed ID: 17048382
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.
    Bhowmick S; Chen TY; Halappanavar M
    J Parallel Distrib Comput; 2015 Feb; 76():132-144. PubMed ID: 25767331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient annotation of non-coding RNA structures including pseudoknots via automated filters.
    Liu C; Song Y; Hu P; Malmberg RL; Cai L
    Comput Syst Bioinformatics Conf; 2006; ():99-110. PubMed ID: 17369629
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method for discovering common patterns from two RNA secondary structures and its application to structural repeat detection.
    Hua L; Wang JT; Ji X; Malhotra A; Khaladkar M; Shapiro BA; Zhang K
    J Bioinform Comput Biol; 2012 Aug; 10(4):1250001. PubMed ID: 22809414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.