These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1300 related articles for article (PubMed ID: 30928635)
1. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice. Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635 [TBL] [Abstract][Full Text] [Related]
2. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637 [TBL] [Abstract][Full Text] [Related]
3. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences. Hua K; Tao X; Han P; Wang R; Zhu JK Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636 [TBL] [Abstract][Full Text] [Related]
4. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice]. Xin GW; Hu XX; Wang KJ; Wang XC Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100 [TBL] [Abstract][Full Text] [Related]
5. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Hu X; Meng X; Liu Q; Li J; Wang K Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576 [TBL] [Abstract][Full Text] [Related]
6. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939 [TBL] [Abstract][Full Text] [Related]
7. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Xu Z; Kuang Y; Ren B; Yan D; Yan F; Spetz C; Sun W; Wang G; Zhou X; Zhou H Genome Biol; 2021 Jan; 22(1):6. PubMed ID: 33397431 [TBL] [Abstract][Full Text] [Related]
8. Expanding plant genome editing scope and profiles with CRISPR-FrCas9 systems targeting palindromic TA sites. He Y; Han Y; Ma Y; Liu S; Fan T; Liang Y; Tang X; Zheng X; Wu Y; Zhang T; Qi Y; Zhang Y Plant Biotechnol J; 2024 Sep; 22(9):2488-2503. PubMed ID: 38713743 [TBL] [Abstract][Full Text] [Related]
9. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid. Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097 [TBL] [Abstract][Full Text] [Related]
10. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs. Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958 [TBL] [Abstract][Full Text] [Related]
11. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Li J; Xu R; Qin R; Liu X; Kong F; Wei P Mol Plant; 2021 Feb; 14(2):352-360. PubMed ID: 33383203 [TBL] [Abstract][Full Text] [Related]
12. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits. Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687 [TBL] [Abstract][Full Text] [Related]
13. Expanding the CRISPR Toolbox in Veillet F; Perrot L; Guyon-Debast A; Kermarrec MP; Chauvin L; Chauvin JE; Gallois JL; Mazier M; Nogué F Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32033083 [TBL] [Abstract][Full Text] [Related]
14. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304 [TBL] [Abstract][Full Text] [Related]
15. Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Sretenovic S; Yin D; Levav A; Selengut JD; Mount SM; Qi Y Plant Commun; 2021 Mar; 2(2):100101. PubMed ID: 33898973 [TBL] [Abstract][Full Text] [Related]
16. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Zhang Y; Ren Q; Tang X; Liu S; Malzahn AA; Zhou J; Wang J; Yin D; Pan C; Yuan M; Huang L; Yang H; Zhao Y; Fang Q; Zheng X; Tian L; Cheng Y; Le Y; McCoy B; Franklin L; Selengut JD; Mount SM; Que Q; Zhang Y; Qi Y Nat Commun; 2021 Mar; 12(1):1944. PubMed ID: 33782402 [TBL] [Abstract][Full Text] [Related]
17. PAM-less plant genome editing using a CRISPR-SpRY toolbox. Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158 [TBL] [Abstract][Full Text] [Related]
18. Generation of genetically modified mice using SpCas9-NG engineered nuclease. Fujii W; Ito H; Kanke T; Ikeda A; Sugiura K; Naito K Sci Rep; 2019 Sep; 9(1):12878. PubMed ID: 31501500 [TBL] [Abstract][Full Text] [Related]
19. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123 [TBL] [Abstract][Full Text] [Related]
20. Expanding the base editing scope in rice by using Cas9 variants. Hua K; Tao X; Zhu JK Plant Biotechnol J; 2019 Feb; 17(2):499-504. PubMed ID: 30051586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]