These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
697 related articles for article (PubMed ID: 30928637)
1. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637 [TBL] [Abstract][Full Text] [Related]
2. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences. Hua K; Tao X; Han P; Wang R; Zhu JK Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636 [TBL] [Abstract][Full Text] [Related]
3. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice. Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635 [TBL] [Abstract][Full Text] [Related]
4. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid. Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097 [TBL] [Abstract][Full Text] [Related]
5. Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster. Ni XY; Zhou ZD; Huang J; Qiao X Arch Insect Biochem Physiol; 2020 May; 104(1):e21662. PubMed ID: 32027059 [TBL] [Abstract][Full Text] [Related]
6. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9. Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720 [TBL] [Abstract][Full Text] [Related]
7. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM. Endo M; Mikami M; Endo A; Kaya H; Itoh T; Nishimasu H; Nureki O; Toki S Nat Plants; 2019 Jan; 5(1):14-17. PubMed ID: 30531939 [TBL] [Abstract][Full Text] [Related]
8. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896 [TBL] [Abstract][Full Text] [Related]
9. Expanding the range of CRISPR/Cas9-directed genome editing in soybean. He R; Zhang P; Yan Y; Yu C; Jiang L; Zhu Y; Wang D aBIOTECH; 2022 Jun; 3(2):89-98. PubMed ID: 36312444 [TBL] [Abstract][Full Text] [Related]
10. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits. Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687 [TBL] [Abstract][Full Text] [Related]
12. Genome Engineering in Plant Using an Efficient CRISPR-xCas9 Toolset With an Expanded PAM Compatibility. Zhang C; Kang G; Liu X; Zhao S; Yuan S; Li L; Yang Y; Wang F; Zhang X; Yang J Front Genome Ed; 2020; 2():618385. PubMed ID: 34713242 [TBL] [Abstract][Full Text] [Related]
13. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Li J; Xu R; Qin R; Liu X; Kong F; Wei P Mol Plant; 2021 Feb; 14(2):352-360. PubMed ID: 33383203 [TBL] [Abstract][Full Text] [Related]
14. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Kim HK; Lee S; Kim Y; Park J; Min S; Choi JW; Huang TP; Yoon S; Liu DR; Kim HH Nat Biomed Eng; 2020 Jan; 4(1):111-124. PubMed ID: 31937939 [TBL] [Abstract][Full Text] [Related]
15. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes. Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426 [TBL] [Abstract][Full Text] [Related]
16. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Hu X; Meng X; Liu Q; Li J; Wang K Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576 [TBL] [Abstract][Full Text] [Related]
17. PAM-less plant genome editing using a CRISPR-SpRY toolbox. Ren Q; Sretenovic S; Liu S; Tang X; Huang L; He Y; Liu L; Guo Y; Zhong Z; Liu G; Cheng Y; Zheng X; Pan C; Yin D; Zhang Y; Li W; Qi L; Li C; Qi Y; Zhang Y Nat Plants; 2021 Jan; 7(1):25-33. PubMed ID: 33398158 [TBL] [Abstract][Full Text] [Related]
18. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs. Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958 [TBL] [Abstract][Full Text] [Related]
19. [Cas9 protein variant VQR recognizes NGAC protospacer adjacent motif in rice]. Xin GW; Hu XX; Wang KJ; Wang XC Yi Chuan; 2018 Dec; 40(12):1112-1119. PubMed ID: 30559100 [TBL] [Abstract][Full Text] [Related]
20. Expanding the CRISPR Toolbox in Veillet F; Perrot L; Guyon-Debast A; Kermarrec MP; Chauvin L; Chauvin JE; Gallois JL; Mazier M; Nogué F Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32033083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]