BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30928741)

  • 21. Importance of different factors for modeling nitrate transport and retention in a tile-drained agricultural catchment with distance-based generalized sensitivity analysis.
    Frederiksen RR; Blicher-Mathiesen G; Vilhelmsen TN; Christiansen AV
    Sci Total Environ; 2024 Feb; 912():169614. PubMed ID: 38157896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments.
    McAleer EB; Coxon CE; Richards KG; Jahangir MMR; Grant J; Mellander PE
    Sci Total Environ; 2017 May; 586():372-389. PubMed ID: 28228237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality.
    Rozemeijer JC; van der Velde Y; van Geer FC; Bierkens MF; Broers HP
    Environ Pollut; 2010 Dec; 158(12):3571-9. PubMed ID: 20869143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hedgerows reduce nitrate flux at hillslope and catchment scales via root uptake and secondary effects.
    Thomas Z; Abbott BW
    J Contam Hydrol; 2018 Aug; 215():51-61. PubMed ID: 30082037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Do reductions in agricultural field drainage during the growing season impact bacterial densities and loads in small tile-fed watersheds?
    Wilkes G; Sunohara MD; Topp E; Gottschall N; Craiovan E; Frey SK; Lapen DR
    Water Res; 2019 Mar; 151():423-438. PubMed ID: 30639728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water quality in a large complex catchment: Significant effects of land use and soil type but limited ability to detect trends.
    Sandström S; Lannergård EE; Futter MN; Djodjic F
    J Environ Manage; 2024 Jan; 349():119500. PubMed ID: 37951108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches.
    McLay CD; Dragten R; Sparling G; Selvarajah N
    Environ Pollut; 2001; 115(2):191-204. PubMed ID: 11706792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-scale controls on the in-stream dynamics of nitrate and turbidity in semiarid agricultural waterway networks.
    Webster AJ; Cadenasso ML
    J Environ Manage; 2020 May; 262():110307. PubMed ID: 32250790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of mobilisation and delivery processes on contrasting dissolved nitrogen and phosphorus exports in groundwater fed catchments.
    Dupas R; Mellander PE; Gascuel-Odoux C; Fovet O; McAleer EB; McDonald NT; Shore M; Jordan P
    Sci Total Environ; 2017 Dec; 599-600():1275-1287. PubMed ID: 28531946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rice agriculture impacts catchment hydrographic patterns and nitrogen export characteristics in subtropical central China: a paired-catchment study.
    Wang Y; Liu X; Wang H; Li Y; Li Y; Liu F; Xiao R; Shen J; Wu J
    Environ Sci Pollut Res Int; 2017 Jun; 24(18):15700-15711. PubMed ID: 28527141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and potential attenuation of nitrogen in shallow groundwaters in the lower Rangitikei catchment, New Zealand.
    Collins S; Singh R; Rivas A; Palmer A; Horne D; Manderson A; Roygard J; Matthews A
    J Contam Hydrol; 2017 Nov; 206():55-66. PubMed ID: 29033220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer.
    Buvaneshwari S; Riotte J; Sekhar M; Mohan Kumar MS; Sharma AK; Duprey JL; Audry S; Giriraja PR; Praveenkumarreddy Y; Moger H; Durand P; Braun JJ; Ruiz L
    Sci Total Environ; 2017 Feb; 579():838-847. PubMed ID: 27887827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-Term Observations of Nitrogen and Phosphorus Export in Paired-Agricultural Watersheds under Controlled and Conventional Tile Drainage.
    Sunohara MD; Gottschall N; Wilkes G; Craiovan E; Topp E; Que Z; Seidou O; Frey SK; Lapen DR
    J Environ Qual; 2015 Sep; 44(5):1589-604. PubMed ID: 26436276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen Source Inventory and Loading Tool: An integrated approach toward restoration of water-quality impaired karst springs.
    Eller KT; Katz BG
    J Environ Manage; 2017 Jul; 196():702-709. PubMed ID: 28371747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of nitrate-nitrogen concentration in groundwater to stream water in an agricultural head watershed.
    Lee CM; Hamm SY; Cheong JY; Kim K; Yoon H; Kim M; Kim J
    Environ Res; 2020 May; 184():109313. PubMed ID: 32151840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tomography of anthropogenic nitrate contribution along a mesoscale river.
    Müller C; Musolff A; Strachauer U; Brauns M; Tarasova L; Merz R; Knöller K
    Sci Total Environ; 2018 Feb; 615():773-783. PubMed ID: 28992502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin.
    May H; Rixon S; Gardner S; Goel P; Levison J; Binns A
    Sci Total Environ; 2023 Mar; 864():160979. PubMed ID: 36549520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydro-chemical responses at different scales in a rural catchment, UK, and implications for managing the unintended consequences of agriculture.
    Granger SJ; Upadhayay HR; Collins AL
    Environ Res; 2023 Jul; 228():115826. PubMed ID: 37011801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Source strengths, transport pathways and delivery mechanisms of nutrients, suspended solids and coliforms within a small agricultural headwater catchment.
    Edwards AC; Watson HA; Cook YE
    Sci Total Environ; 2012 Sep; 434():123-9. PubMed ID: 22425175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams.
    Graeber D; Gelbrecht J; Pusch MT; Anlanger C; von Schiller D
    Sci Total Environ; 2012 Nov; 438():435-46. PubMed ID: 23026150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.