These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30928741)

  • 41. The implications of lag times between nitrate leaching losses and riverine loads for water quality policy.
    McDowell RW; Simpson ZP; Ausseil AG; Etheridge Z; Law R
    Sci Rep; 2021 Aug; 11(1):16450. PubMed ID: 34385500
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitrogen in rainfall, cloud water, throughfall, stemflow, stream water and groundwater for the Plynlimon catchments of mid-Wales.
    Neal C; Reynolds B; Neal M; Hill L; Wickham H; Pugh B
    Sci Total Environ; 2003 Oct; 314-316():121-51. PubMed ID: 14499530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantifying background nitrate removal mechanisms in an agricultural watershed with contrasting subcatchment baseflow concentrations.
    Zell WO; Culver TB; Sanford WE; Goodall JL
    J Environ Qual; 2020 Mar; 49(2):392-403. PubMed ID: 33016417
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China.
    Hao Z; Zhang X; Gao Y; Xu Z; Yang F; Wen X; Wang Y
    Environ Pollut; 2018 May; 236():177-187. PubMed ID: 29414338
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs.
    Minet EP; Goodhue R; Meier-Augenstein W; Kalin RM; Fenton O; Richards KG; Coxon CE
    Water Res; 2017 Nov; 124():85-96. PubMed ID: 28750288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Groundwater-dependent ecosystems as transfer vectors of nitrogen from the aquifer to surface waters in agricultural basins: The fontanili of the Po Plain (Italy).
    Balestrini R; Delconte CA; Sacchi E; Buffagni A
    Sci Total Environ; 2021 Jan; 753():141995. PubMed ID: 32892001
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrate accumulation and leaching potential is controlled by land-use and extreme precipitation in a headwater catchment in the North China Plain.
    Zheng W; Wang S; Tan K; Lei Y
    Sci Total Environ; 2020 Mar; 707():136168. PubMed ID: 31869618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of climate on inter-annual variation in stream nitrate fluxes and concentrations.
    Gascuel-Odoux C; Aurousseau P; Durand P; Ruiz L; Molenat J
    Sci Total Environ; 2010 Nov; 408(23):5657-66. PubMed ID: 19497610
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regional nitrogen dynamics in the TERENO Bode River catchment, Germany, as constrained by stable isotope patterns.
    Mueller C; Krieg R; Merz R; Knöller K
    Isotopes Environ Health Stud; 2016; 52(1-2):61-74. PubMed ID: 25811939
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrologic Extremes and Legacy Sources Can Override Efforts to Mitigate Nutrient and Sediment Losses at the Catchment Scale.
    Bieroza M; Bergström L; Ulén B; Djodjic F; Tonderski K; Heeb A; Svensson J; Malgeryd J
    J Environ Qual; 2019 Sep; 48(5):1314-1324. PubMed ID: 31589708
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nitrate dynamics in groundwater under sugarcane in a wet-tropics catchment.
    Stanley J; Reading L
    Heliyon; 2020 Dec; 6(12):e05507. PubMed ID: 33319085
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting rapid herbicide leaching to surface waters from an artificially drained headwater catchment using a one dimensional two-domain model coupled with a simple groundwater model.
    Tediosi A; Whelan MJ; Rushton KR; Gandolfi C
    J Contam Hydrol; 2013 Feb; 145():67-81. PubMed ID: 23313906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya.
    Jacobs SR; Breuer L; Butterbach-Bahl K; Pelster DE; Rufino MC
    Sci Total Environ; 2017 Dec; 603-604():519-532. PubMed ID: 28645050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data.
    Arenas Amado A; Schilling KE; Jones CS; Thomas N; Weber LJ
    Environ Monit Assess; 2017 Sep; 189(9):426. PubMed ID: 28766121
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long-term water quality assessments under changing land use in a large semi-arid catchment in South Africa.
    Mararakanye N; Le Roux JJ; Franke AC
    Sci Total Environ; 2022 Apr; 818():151670. PubMed ID: 34843793
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effectiveness of Nutrient Management on Water Quality Improvement: A Synthesis on Nitrate-Nitrogen Loss from Subsurface Drainage.
    Liu W; Yuan Y; Koropeckyj-Cox L
    Trans ASABE; 2021 Mar; 64(2):675-689. PubMed ID: 34336367
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial and temporal variability in discharge and nitrate in Iowa subsurface drains.
    Coupe RH; Thornburg JD; Smith EA; Capel PD
    Environ Monit Assess; 2020 Oct; 192(11):687. PubMed ID: 33029661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Spatial-temporal Variations and the Regulators of Nitrate Status in Shallow Groundwater of the Typical Mountainous Agricultural Watershed in the Upper Reaches of the Yangtze River].
    Jiang N; Zhou MH; Li H; Li ZY; Zhang XF; Zhu B
    Huan Jing Ke Xue; 2020 Oct; 41(10):4539-4546. PubMed ID: 33124385
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 15N-Nitrate signature in low-order streams: effects of land cover and agricultural practices.
    Lefebvre S; Clément JC; Pinay G; Thenail C; Durand P; Marmonier P
    Ecol Appl; 2007 Dec; 17(8):2333-46. PubMed ID: 18213973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Importance of the vegetation-groundwater-stream continuum to understand transformation of biogenic carbon in aquatic systems - A case study based on a pine-maize comparison in a lowland sandy watershed (Landes de Gascogne, SW France).
    Deirmendjian L; Anschutz P; Morel C; Mollier A; Augusto L; Loustau D; Cotovicz LC; Buquet D; Lajaunie K; Chaillou G; Voltz B; Charbonnier C; Poirier D; Abril G
    Sci Total Environ; 2019 Apr; 661():613-629. PubMed ID: 30682612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.