BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30928870)

  • 1. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid.
    Shameera Ahamed TK; Rajan VK; Sabira K; Muraleedharan K
    Comput Biol Chem; 2019 Jun; 80():66-78. PubMed ID: 30928870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fisetin and Robinetin antiradical activity under solvent effect: density functional theory study.
    Menacer R; Rekkab S; Kabouche Z
    J Mol Model; 2022 Aug; 28(8):240. PubMed ID: 35913682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular structure and antioxidant properties of delphinidin.
    Estévez L; Mosquera RA
    J Phys Chem A; 2008 Oct; 112(42):10614-23. PubMed ID: 18821739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones.
    Wang G; Xue Y; An L; Zheng Y; Dou Y; Zhang L; Liu Y
    Food Chem; 2015 Mar; 171():89-97. PubMed ID: 25308647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant activity and enzymatic of lichen substances: A study based on cyclic voltammetry and theoretical.
    Yañez O; Osorio MI; Osorio E; Tiznado W; Ruíz L; García C; Nagles O; Simirgiotis MJ; Castañeta G; Areche C; García-Beltrán O
    Chem Biol Interact; 2023 Feb; 372():110357. PubMed ID: 36693444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights.
    Pandithavidana DR; Jayawardana SB
    Molecules; 2019 Apr; 24(9):. PubMed ID: 31027343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on the antioxidant properties of 2'-hydroxychalcones: H-atom vs. electron transfer mechanism.
    Xue Y; Zheng Y; Zhang L; Wu W; Yu D; Liu Y
    J Mol Model; 2013 Sep; 19(9):3851-62. PubMed ID: 23801254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action.
    Klein E; Lukes V
    J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis.
    Zheng YZ; Chen DF; Deng G; Guo R; Fu ZM
    Phytochemistry; 2018 Dec; 156():184-192. PubMed ID: 30312934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins.
    Xue Y; Zheng Y; An L; Dou Y; Liu Y
    Food Chem; 2014 May; 151():198-206. PubMed ID: 24423521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, antioxidative potency and potential scavenging of OH and OOH of phenylethyl-3,4-dihydroxyhydrocinnamate in protic and aprotic media: DFT study.
    Holtomo O; Nsangou M; Fifen JJ; Motapon O
    J Mol Graph Model; 2017 Nov; 78():221-233. PubMed ID: 29101851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action.
    Biela M; Kleinová A; Klein E
    Phytochemistry; 2022 Aug; 200():113254. PubMed ID: 35623472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study.
    Zheng YZ; Deng G; Liang Q; Chen DF; Guo R; Lai RC
    Sci Rep; 2017 Aug; 7(1):7543. PubMed ID: 28790397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidative mechanisms in chlorogenic acid.
    Tošović J; Marković S; Dimitrić Marković JM; Mojović M; Milenković D
    Food Chem; 2017 Dec; 237():390-398. PubMed ID: 28764012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives.
    Thbayh DK; Reizer E; Kahaly MU; Viskolcz B; Fiser B
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids.
    Marković S; Tošović J
    Food Chem; 2016 Nov; 210():585-92. PubMed ID: 27211685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study on the enthalpies of homolytic and heterolytic N-H bond cleavage in substituted melatonins in the gas-phase and aqueous solution.
    Najafi M; Farmanzadeh D; Klein E; Zahedi M
    Acta Chim Slov; 2013; 60(1):43-55. PubMed ID: 23841331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.
    Chen Y; Xiao H; Zheng J; Liang G
    PLoS One; 2015; 10(3):e0121276. PubMed ID: 25803685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of different free radicals on scavenging potency of gallic acid.
    Đorović J; Marković JM; Stepanić V; Begović N; Amić D; Marković Z
    J Mol Model; 2014 Jul; 20(7):2345. PubMed ID: 24965934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.