These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 30929304)
21. Base to Tip and Long-Distance Transport of Sodium in the Root of Common Reed [Phragmites australis (Cav.) Trin. ex Steud.] at Steady State Under Constant High-Salt Conditions. Fujimaki S; Maruyama T; Suzui N; Kawachi N; Miwa E; Higuchi K Plant Cell Physiol; 2015 May; 56(5):943-50. PubMed ID: 25667113 [TBL] [Abstract][Full Text] [Related]
22. Antioxidant response to metal pollution in Phragmites australis from Anzali wetland. Esmaeilzadeh M; Karbassi A; Bastami KD Mar Pollut Bull; 2017 Jun; 119(1):376-380. PubMed ID: 28341292 [TBL] [Abstract][Full Text] [Related]
23. Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation. Oliveira T; Mucha AP; Reis I; Rodrigues P; Gomes CR; Almeida CM Mar Pollut Bull; 2014 Nov; 88(1-2):231-8. PubMed ID: 25240741 [TBL] [Abstract][Full Text] [Related]
24. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Bragato C; Brix H; Malagoli M Environ Pollut; 2006 Dec; 144(3):967-75. PubMed ID: 16574288 [TBL] [Abstract][Full Text] [Related]
25. Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study. Cao Y; Ma C; Zhang J; Wang S; White JC; Chen G; Xing B Environ Pollut; 2019 Mar; 246():980-989. PubMed ID: 31159147 [TBL] [Abstract][Full Text] [Related]
26. Arbuscular mycorrhizal fungi effect growth and photosynthesis of Phragmites australis (Cav.) Trin ex. Steudel under copper stress. Wu JT; Wang L; Zhao L; Huang XC; Ma F Plant Biol (Stuttg); 2020 Jan; 22(1):62-69. PubMed ID: 31464065 [TBL] [Abstract][Full Text] [Related]
27. Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. Collin B; Doelsch E; Keller C; Cazevieille P; Tella M; Chaurand P; Panfili F; Hazemann JL; Meunier JD Environ Pollut; 2014 Apr; 187():22-30. PubMed ID: 24418975 [TBL] [Abstract][Full Text] [Related]
28. Copper uptake and its effect on metal distribution in root growth zones of Commelina communis revealed by SRXRF. Shi J; Yuan X; Chen X; Wu B; Huang Y; Chen Y Biol Trace Elem Res; 2011 Jun; 141(1-3):294-304. PubMed ID: 20449773 [TBL] [Abstract][Full Text] [Related]
29. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels. Zheng S; Wang C; Shen Z; Quan Y; Liu X Int J Phytoremediation; 2015; 17(1-6):208-14. PubMed ID: 25397977 [TBL] [Abstract][Full Text] [Related]
30. Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils. Minkina T; Fedorenko G; Nevidomskaya D; Fedorenko A; Chaplygin V; Mandzhieva S Sci Total Environ; 2018 Sep; 636():392-401. PubMed ID: 29709856 [TBL] [Abstract][Full Text] [Related]
31. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya. Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910 [TBL] [Abstract][Full Text] [Related]
32. Synchrotron X-ray microfluorescence measurement of metal distributions in Phragmites australis root system in the Yangtze River intertidal zone. Feng H; Zhang W; Qian Y; Liu W; Yu L; Yoo S; Wang J; Wang JJ; Eng C; Liu CJ; Tappero R J Synchrotron Radiat; 2016 Jul; 23(Pt 4):937-46. PubMed ID: 27359142 [TBL] [Abstract][Full Text] [Related]
33. Trace elements removal ability and antioxidant activity of Phragmites australis (from Algeria). Sellal A; Belattar R; Bouzidi A Int J Phytoremediation; 2019; 21(5):456-460. PubMed ID: 30734570 [TBL] [Abstract][Full Text] [Related]
34. Seedling performance of Phragmites australis (Cav.) Trin ex. Steudel in the presence of arbuscular mycorrhizal fungi. Wu J; Ma F; Wang L; Yang J; Huang X; An G; Liu S J Appl Microbiol; 2014 Jun; 116(6):1593-606. PubMed ID: 24612351 [TBL] [Abstract][Full Text] [Related]
35. Uptake, effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (cav.) trin. ex steud. Pflugmacher S; Wiegand C; Beattie KA; Krause E; Steinberg CE; Codd GA Environ Toxicol Chem; 2001 Apr; 20(4):846-52. PubMed ID: 11345462 [TBL] [Abstract][Full Text] [Related]
36. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650 [TBL] [Abstract][Full Text] [Related]
37. Zinc accumulation in plant species indigenous to a Portuguese polluted site: relation with soil contamination. Marques AP; Rangel AO; Castro PM J Environ Qual; 2007; 36(3):646-53. PubMed ID: 17412901 [TBL] [Abstract][Full Text] [Related]
38. Biogeochemical and microscopic studies of soil and Phragmites australis (Cav.) Trin. ex Steud. plants affected by coal mine dumps. Minkina T; Fedorenko G; Nevidomskaya D; Fedorenko A; Sushkova S; Mandzhieva S; Chaplygin V; Litvinov Y; Ghazaryan K; Movsesyan H; Popov Y; Rensing C; Rajput VD; Wong MH Environ Sci Pollut Res Int; 2024 Jan; 31(1):406-421. PubMed ID: 38015398 [TBL] [Abstract][Full Text] [Related]
39. Role of chelant on Cu distribution and speciation in Lolium multiflorum by synchrotron techniques. Zhao YP; Cui JL; Chan TS; Dong JC; Chen DL; Li XD Sci Total Environ; 2018 Apr; 621():772-781. PubMed ID: 29202288 [TBL] [Abstract][Full Text] [Related]
40. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]