These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 30929439)
41. Photon-induced carrier recombination in the nonlayered-structured hybrid organic-inorganic perovskite nano-sheets. Wang D; Shi WB; Jing H; Yin C; Zhu Y; Su J; Ma GB; Peng R; Wang X; Wang M Opt Express; 2018 Oct; 26(21):27504-27514. PubMed ID: 30469816 [TBL] [Abstract][Full Text] [Related]
42. Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton-Phonon Interaction. Fu Y; Hautzinger MP; Luo Z; Wang F; Pan D; Aristov MM; Guzei IA; Pan A; Zhu X; Jin S ACS Cent Sci; 2019 Aug; 5(8):1377-1386. PubMed ID: 31482120 [TBL] [Abstract][Full Text] [Related]
43. Organic-Salt-Assisted Crystal Growth and Orientation of Quasi-2D Ruddlesden-Popper Perovskites for Solar Cells with Efficiency over 19. Lai H; Lu D; Xu Z; Zheng N; Xie Z; Liu Y Adv Mater; 2020 Aug; 32(33):e2001470. PubMed ID: 32627858 [TBL] [Abstract][Full Text] [Related]
44. Tunable Ferroelectricity in Ruddlesden-Popper Halide Perovskites. Zhang Q; Solanki A; Parida K; Giovanni D; Li M; Jansen TLC; Pshenichnikov MS; Sum TC ACS Appl Mater Interfaces; 2019 Apr; 11(14):13523-13532. PubMed ID: 30854841 [TBL] [Abstract][Full Text] [Related]
45. Vibrational relaxation dynamics in layered perovskite quantum wells. Quan LN; Park Y; Guo P; Gao M; Jin J; Huang J; Copper JK; Schwartzberg A; Schaller R; Limmer DT; Yang P Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34131083 [TBL] [Abstract][Full Text] [Related]
47. Temperature-Dependent Structural and Optoelectronic Properties of the Layered Perovskite 2-Thiophenemethylammonium Lead Iodide. Deveikis J; Giza M; Walker D; Liu J; Wilson C; Gallop NP; Docampo P; Lloyd-Hughes J; Milot RL J Phys Chem C Nanomater Interfaces; 2024 Aug; 128(31):13108-13120. PubMed ID: 39140097 [TBL] [Abstract][Full Text] [Related]
48. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Ma L; Ju MG; Dai J; Zeng XC Nanoscale; 2018 Jun; 10(24):11314-11319. PubMed ID: 29897093 [TBL] [Abstract][Full Text] [Related]
49. Exciton-Phonon Interaction-Induced Large In-Plane Optical Anisotropy in Two-Dimensional All-Inorganic Perovskite Crystals. Zhou Y; Li J; Fang C; Ma J; Li L; Li D J Phys Chem Lett; 2021 Apr; 12(13):3387-3392. PubMed ID: 33787268 [TBL] [Abstract][Full Text] [Related]
50. Layered 2D Halide Perovskites beyond the Ruddlesden-Popper Phase: Tailored Interlayer Chemistries for High-Performance Solar Cells. Gong J; Hao M; Zhang Y; Liu M; Zhou Y Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202112022. PubMed ID: 34761495 [TBL] [Abstract][Full Text] [Related]
51. A New Organic Interlayer Spacer for Stable and Efficient 2D Ruddlesden-Popper Perovskite Solar Cells. Li Z; Liu N; Meng K; Liu Z; Hu Y; Xu Q; Wang X; Li S; Cheng L; Chen G Nano Lett; 2019 Aug; 19(8):5237-5245. PubMed ID: 31369277 [TBL] [Abstract][Full Text] [Related]
53. 2D and 3D double perovskite with dimensionality-dependent optoelectronic properties: first-principle study on Cs Chen YL; Yan DN; Zeng MW; Liao CS; Cai MQ J Phys Condens Matter; 2021 Nov; 34(6):. PubMed ID: 34715688 [TBL] [Abstract][Full Text] [Related]
54. High-Quality Ruddlesden-Popper Perovskite Films Based on In Situ Formed Organic Spacer Cations. Qing J; Kuang C; Wang H; Wang Y; Liu XK; Bai S; Li M; Sum TC; Hu Z; Zhang W; Gao F Adv Mater; 2019 Oct; 31(41):e1904243. PubMed ID: 31456250 [TBL] [Abstract][Full Text] [Related]
55. Harnessing 2D Ruddlesden-Popper Perovskite with Polar Organic Cation for Ultrasensitive Multibit Nonvolatile Transistor-Type Photomemristors. Lai PT; Chen CY; Lin HC; Chuang BY; Kuo KH; Greve CR; Su TK; Tan GH; Li CF; Huang SW; Hsiao KY; Herzig EM; Lu MY; Huang YC; Wong KT; Lin HW ACS Nano; 2023 Dec; 17(24):25552-25564. PubMed ID: 38096149 [TBL] [Abstract][Full Text] [Related]
56. Arene and functionalized arene based two dimensional organic-inorganic hybrid perovskites for photovoltaic applications. Kar M; Ghosh A; Sarkar R; Pal S; Sarkar P J Comput Chem; 2021 Oct; 42(27):1982-1990. PubMed ID: 34390256 [TBL] [Abstract][Full Text] [Related]
57. Studies of high-membered two-dimensional Ruddlesden-Popper Cs Chen YC; Wu KC; Chen HA; Chu WH; Gowdru SM; Lin JC; Lin BH; Tang MT; Chang CC; Lai YH; Kuo TR; Wen CY; Wang DY Mater Horiz; 2022 Aug; 9(9):2433-2442. PubMed ID: 35848594 [TBL] [Abstract][Full Text] [Related]
58. Remote Phononic Effects in Epitaxial Ruddlesden-Popper Halide Perovskites. Chen Z; Wang Y; Sun X; Xiang Y; Hu Y; Jiang J; Feng J; Sun YY; Wang X; Wang GC; Lu TM; Gao H; Wertz EA; Shi J J Phys Chem Lett; 2018 Dec; 9(23):6676-6682. PubMed ID: 30398890 [TBL] [Abstract][Full Text] [Related]
59. Continuous production of ultrathin organic-inorganic Ruddlesden-Popper perovskite nanoplatelets via a flow reactor. Biesold GM; Liang S; Wagner BK; Kang Z; Lin Z Nanoscale; 2021 Aug; 13(30):13108-13115. PubMed ID: 34477794 [TBL] [Abstract][Full Text] [Related]
60. Hot-Casting and Anti-solvent Free Fabrication of Efficient and Stable Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Yang W; Zhan Y; Yang F; Li Y ACS Appl Mater Interfaces; 2021 Dec; 13(51):61039-61046. PubMed ID: 34910452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]