These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 30929784)
21. Plant Cell Wall Breakdown by Hindgut Microorganisms: Can We Get Scientific Insights From Rumen Microorganisms? Zhang Z; Gao X; Dong W; Huang B; Wang Y; Zhu M; Wang C J Equine Vet Sci; 2022 Aug; 115():104027. PubMed ID: 35661771 [TBL] [Abstract][Full Text] [Related]
22. Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea. Lee JW; Kwon KK; Bahk JJ; Lee DH; Lee HS; Kang SG; Lee JH J Microbiol; 2016 Dec; 54(12):814-822. PubMed ID: 27888460 [TBL] [Abstract][Full Text] [Related]
23. Methane output of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed a hay-only diet: implications for the scaling of methane production with body mass in non-ruminant mammalian herbivores. Franz R; Soliva CR; Kreuzer M; Hummel J; Clauss M Comp Biochem Physiol A Mol Integr Physiol; 2011 Jan; 158(1):177-81. PubMed ID: 20971203 [TBL] [Abstract][Full Text] [Related]
24. In Vitro Response of Rumen Microbiota to the Antimethanogenic Red Macroalga Asparagopsis taxiformis. Machado L; Tomkins N; Magnusson M; Midgley DJ; de Nys R; Rosewarne CP Microb Ecol; 2018 Apr; 75(3):811-818. PubMed ID: 29018917 [TBL] [Abstract][Full Text] [Related]
25. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Clauss M; Frey R; Kiefer B; Lechner-Doll M; Loehlein W; Polster C; Rössner GE; Streich WJ Oecologia; 2003 Jun; 136(1):14-27. PubMed ID: 12712314 [TBL] [Abstract][Full Text] [Related]
26. Rumen methanogen and protozoal communities of Tibetan sheep and Gansu Alpine Finewool sheep grazing on the Qinghai-Tibetan Plateau, China. Huang J; Li Y BMC Microbiol; 2018 Dec; 18(1):212. PubMed ID: 30545295 [TBL] [Abstract][Full Text] [Related]
27. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. Islam M; Lee SS J Anim Sci Technol; 2019 May; 61(3):122-137. PubMed ID: 31333869 [TBL] [Abstract][Full Text] [Related]
28. [Methanogenic activity and methanogen diversity in marine gas field sediments]. Tian Q; Wang J; Fan XL; Luo SJ; Guo RB; Qiu YL Huan Jing Ke Xue; 2014 Jun; 35(6):2322-7. PubMed ID: 25158513 [TBL] [Abstract][Full Text] [Related]
29. Influence of Dietary Supplementation of Ensiled Devil Fish and Staphylococcus saprophyticus on Equine Fecal Greenhouse Gases Production. García EDA; Khusro A; Pacheco EBF; Adegbeye MJ; Barbabosa-Pliego A; Lagunas BC; Salas JMC; Mateos RG; Aarti C; Elghandour MMMY J Equine Vet Sci; 2019 Aug; 79():105-112. PubMed ID: 31405488 [TBL] [Abstract][Full Text] [Related]
30. Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Wright AD; Auckland CH; Lynn DH Appl Environ Microbiol; 2007 Jul; 73(13):4206-10. PubMed ID: 17483285 [TBL] [Abstract][Full Text] [Related]
31. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach. Guyader J; Eugène M; Nozière P; Morgavi DP; Doreau M; Martin C Animal; 2014 Nov; 8(11):1816-25. PubMed ID: 25075950 [TBL] [Abstract][Full Text] [Related]
32. The rumen and hindgut as source of ruminant methanogenesis. Immig I Environ Monit Assess; 1996 Sep; 42(1-2):57-72. PubMed ID: 24193493 [TBL] [Abstract][Full Text] [Related]
33. Genome of Rice Cluster I archaea--the key methane producers in the rice rhizosphere. Erkel C; Kube M; Reinhardt R; Liesack W Science; 2006 Jul; 313(5785):370-2. PubMed ID: 16857943 [TBL] [Abstract][Full Text] [Related]
35. Genomic characterization of methanomicrobiales reveals three classes of methanogens. Anderson I; Ulrich LE; Lupa B; Susanti D; Porat I; Hooper SD; Lykidis A; Sieprawska-Lupa M; Dharmarajan L; Goltsman E; Lapidus A; Saunders E; Han C; Land M; Lucas S; Mukhopadhyay B; Whitman WB; Woese C; Bristow J; Kyrpides N PLoS One; 2009 Jun; 4(6):e5797. PubMed ID: 19495416 [TBL] [Abstract][Full Text] [Related]
36. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective. Llonch P; Haskell MJ; Dewhurst RJ; Turner SP Animal; 2017 Feb; 11(2):274-284. PubMed ID: 27406001 [TBL] [Abstract][Full Text] [Related]
37. Population dynamics of methanogens and methane formation associated with different loading rates of organic acids along with ammonia: redundancy analysis. Kim W; Shin SG; Cho K; Han G; Hwang S Bioprocess Biosyst Eng; 2014 May; 37(5):977-81. PubMed ID: 24068497 [TBL] [Abstract][Full Text] [Related]
38. Microbial ecosystem and methanogenesis in ruminants. Morgavi DP; Forano E; Martin C; Newbold CJ Animal; 2010 Jul; 4(7):1024-36. PubMed ID: 22444607 [TBL] [Abstract][Full Text] [Related]
39. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Hristov AN; Ott T; Tricarico J; Rotz A; Waghorn G; Adesogan A; Dijkstra J; Montes F; Oh J; Kebreab E; Oosting SJ; Gerber PJ; Henderson B; Makkar HP; Firkins JL J Anim Sci; 2013 Nov; 91(11):5095-113. PubMed ID: 24045470 [TBL] [Abstract][Full Text] [Related]
40. Biomethane: The energy storage, platform chemical and greenhouse gas mitigation target. Bagi Z; Ács N; Böjti T; Kakuk B; Rákhely G; Strang O; Szuhaj M; Wirth R; Kovács KL Anaerobe; 2017 Aug; 46():13-22. PubMed ID: 28341558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]