These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 30929948)
1. In silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target. Rout S; Mahapatra RK Bioorg Med Chem; 2019 Jun; 27(12):2553-2571. PubMed ID: 30929948 [TBL] [Abstract][Full Text] [Related]
2. 3D QSAR, pharmacophore and molecular docking studies of known inhibitors and designing of novel inhibitors for M18 aspartyl aminopeptidase of Plasmodium falciparum. Kumari M; Chandra S; Tiwari N; Subbarao N BMC Struct Biol; 2016 Aug; 16():12. PubMed ID: 27534744 [TBL] [Abstract][Full Text] [Related]
3. Identification of first-in-class plasmodium OTU inhibitors with potent anti-malarial activity. Siyah P; Akgol S; Durdagi S; Kocabas F Biochem J; 2021 Sep; 478(18):3445-3466. PubMed ID: 34486667 [TBL] [Abstract][Full Text] [Related]
4. A knowledge-based approach for identification of drugs against vivapain-2 protein of Plasmodium vivax through pharmacophore-based virtual screening with comparative modelling. Yadav MK; Singh A; Swati D Appl Biochem Biotechnol; 2014 Aug; 173(8):2174-88. PubMed ID: 24970047 [TBL] [Abstract][Full Text] [Related]
5. In silico screening of novel inhibitors of M17 Leucine Amino Peptidase (LAP) of Plasmodium vivax as therapeutic candidate. Rout S; Mahapatra RK Biomed Pharmacother; 2016 Aug; 82():192-201. PubMed ID: 27470355 [TBL] [Abstract][Full Text] [Related]
6. Screening and In Vitro Evaluation of Potential Plasmodium falciparum Leucyl Aminopeptidase Inhibitors. Chaudhary M; Singh V; Anvikar AR; Sahi S Curr Comput Aided Drug Des; 2016; 12(4):282-293. PubMed ID: 27449897 [TBL] [Abstract][Full Text] [Related]
7. In Silico screening on the three-dimensional model of the Plasmodium vivax SUB1 protease leads to the validation of a novel anti-parasite compound. Bouillon A; Giganti D; Benedet C; Gorgette O; Pêtres S; Crublet E; Girard-Blanc C; Witkowski B; Ménard D; Nilges M; Mercereau-Puijalon O; Stoven V; Barale JC J Biol Chem; 2013 Jun; 288(25):18561-73. PubMed ID: 23653352 [TBL] [Abstract][Full Text] [Related]
8. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum. Qidwai T; Yadav DK; Khan F; Dhawan S; Bhakuni RS Curr Pharm Des; 2012; 18(37):6133-54. PubMed ID: 22670592 [TBL] [Abstract][Full Text] [Related]
9. Hydroxamic Acid Inhibitors Provide Cross-Species Inhibition of Plasmodium M1 and M17 Aminopeptidases. Vinh NB; Drinkwater N; Malcolm TR; Kassiou M; Lucantoni L; Grin PM; Butler GS; Duffy S; Overall CM; Avery VM; Scammells PJ; McGowan S J Med Chem; 2019 Jan; 62(2):622-640. PubMed ID: 30537832 [TBL] [Abstract][Full Text] [Related]
10. In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors. Brogi S; Giovani S; Brindisi M; Gemma S; Novellino E; Campiani G; Blackman MJ; Butini S J Mol Graph Model; 2016 Mar; 64():121-130. PubMed ID: 26826801 [TBL] [Abstract][Full Text] [Related]
11. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach. Kesharwani RK; Singh DV; Misra K J Vector Borne Dis; 2013; 50(2):93-102. PubMed ID: 23995310 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of plasmodial transketolases and identification of potential inhibitors: an in silico study. Boateng RA; Tastan Bishop Ö; Musyoka TM Malar J; 2020 Nov; 19(1):442. PubMed ID: 33256744 [TBL] [Abstract][Full Text] [Related]
13. Remarkable similarity in Plasmodium falciparum and Plasmodium vivax geranylgeranyl diphosphate synthase dynamics and its implication for antimalarial drug design. Venkatramani A; Gravina Ricci C; Oldfield E; McCammon JA Chem Biol Drug Des; 2018 Jun; 91(6):1068-1077. PubMed ID: 29345110 [TBL] [Abstract][Full Text] [Related]
14. Targeting the Plasmodium falciparum plasmepsin V by ligand-based virtual screening. Meissner KA; Kronenberger T; Maltarollo VG; Trossini GHG; Wrenger C Chem Biol Drug Des; 2019 Mar; 93(3):300-312. PubMed ID: 30320974 [TBL] [Abstract][Full Text] [Related]
15. Virtual Screening of Flavonoids against Yasir M; Park J; Han ET; Park WS; Han JH; Kwon YS; Lee HJ; Chun W Curr Comput Aided Drug Des; 2024; 20(5):616-627. PubMed ID: 37365785 [TBL] [Abstract][Full Text] [Related]
16. Genetic and structural characterization of PvSERA4: potential implication as therapeutic target for Plasmodium vivax malaria. Rahul CN; Shiva Krishna K; Pawar AP; Bai M; Kumar V; Phadke S; Rajesh V J Biomol Struct Dyn; 2014 Apr; 32(4):580-90. PubMed ID: 23582016 [TBL] [Abstract][Full Text] [Related]
17. Modelling of human leucyl aminopeptidases for in silico off target binding analysis of potential Plasmodium falciparum leucine aminopeptidase (PfA-M17) specific inhibitors. Sahi S; Raj U; Chaudhary M; Nain V Recent Pat Endocr Metab Immune Drug Discov; 2014; 8(3):191-201. PubMed ID: 25269653 [TBL] [Abstract][Full Text] [Related]
18. Identification and Validation of a Potent Dual Inhibitor of the P. falciparum M1 and M17 Aminopeptidases Using Virtual Screening. Ruggeri C; Drinkwater N; Sivaraman KK; Bamert RS; McGowan S; Paiardini A PLoS One; 2015; 10(9):e0138957. PubMed ID: 26406322 [TBL] [Abstract][Full Text] [Related]
19. In silico Screening for Identification of Novel Anti-malarial Inhibitors by Molecular Docking, Pharmacophore Modeling and Virtual Screening. Batool S; Khan ZA; Kamal W; Mushtaq G; Kamal MA Med Chem; 2015; 11(7):687-700. PubMed ID: 25741881 [TBL] [Abstract][Full Text] [Related]
20. Computational strategies to explore antimalarial thiazine alkaloid lead compounds based on an Australian marine sponge Plakortis Lita. Aswathy L; Jisha RS; Masand VH; Gajbhiye JM; Shibi IG J Biomol Struct Dyn; 2017 Aug; 35(11):2407-2429. PubMed ID: 27494993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]