These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1051 related articles for article (PubMed ID: 30929999)

  • 1. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study.
    Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z
    Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer.
    Ying M; Pan J; Lu G; Zhou S; Fu J; Wang Q; Wang L; Hu B; Wei Y; Shen J
    BMC Cancer; 2022 May; 22(1):524. PubMed ID: 35534797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics Analysis of Iodine-Based Material Decomposition Images With Dual-Energy Computed Tomography Imaging for Preoperatively Predicting Microsatellite Instability Status in Colorectal Cancer.
    Wu J; Zhang Q; Zhao Y; Liu Y; Chen A; Li X; Wu T; Li J; Guo Y; Liu A
    Front Oncol; 2019; 9():1250. PubMed ID: 31824843
    [No Abstract]   [Full Text] [Related]  

  • 4. Intratumoral and peritumoral CT-based radiomics for predicting the microsatellite instability in gastric cancer.
    Chen X; Zhuang Z; Pen L; Xue J; Zhu H; Zhang L; Wang D
    Abdom Radiol (NY); 2024 May; 49(5):1363-1375. PubMed ID: 38305796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-treatment CT-based radiomics nomogram for predicting microsatellite instability status in colorectal cancer.
    Pei Q; Yi X; Chen C; Pang P; Fu Y; Lei G; Chen C; Tan F; Gong G; Li Q; Zai H; Chen BT
    Eur Radiol; 2022 Jan; 32(1):714-724. PubMed ID: 34258636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Microsatellite Instability Status in Colorectal Cancer Based on Triphasic Enhanced Computed Tomography Radiomics Signatures: A Multicenter Study.
    Cao Y; Zhang G; Zhang J; Yang Y; Ren J; Yan X; Wang Z; Zhao Z; Huang X; Bao H; Zhou J
    Front Oncol; 2021; 11():687771. PubMed ID: 34178682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation.
    Golia Pernicka JS; Gagniere J; Chakraborty J; Yamashita R; Nardo L; Creasy JM; Petkovska I; Do RRK; Bates DDB; Paroder V; Gonen M; Weiser MR; Simpson AL; Gollub MJ
    Abdom Radiol (NY); 2019 Nov; 44(11):3755-3763. PubMed ID: 31250180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The value of single-source dual-energy CT imaging for discriminating microsatellite instability from microsatellite stability human colorectal cancer.
    Wu J; Lv Y; Wang N; Zhao Y; Zhang P; Liu Y; Chen A; Li J; Li X; Guo Y; Wu T; Liu A
    Eur Radiol; 2019 Jul; 29(7):3782-3790. PubMed ID: 30903331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Microsatellite Instability in Colorectal Cancer Using a Machine Learning Model Based on PET/CT Radiomics.
    Kim S; Lee JH; Park EJ; Lee HS; Baik SH; Jeon TJ; Lee KY; Ryu YH; Kang J
    Yonsei Med J; 2023 May; 64(5):320-326. PubMed ID: 37114635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoperative prediction of microsatellite instability status in colorectal cancer based on a multiphasic enhanced CT radiomics nomogram model.
    Bian X; Sun Q; Wang M; Dong H; Dai X; Zhang L; Fan G; Chen G
    BMC Med Imaging; 2024 Apr; 24(1):77. PubMed ID: 38566000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrative clinical and CT-based tumoral/peritumoral radiomics nomogram to predict the microsatellite instability in rectal carcinoma.
    Ma Y; Xu X; Lin Y; Li J; Yuan H
    Abdom Radiol (NY); 2024 Mar; 49(3):783-790. PubMed ID: 38001326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a radiomics model based on T2WI images for preoperative prediction of microsatellite instability status in rectal cancer: Study Protocol Clinical Trial (SPIRIT Compliant).
    Huang Z; Zhang W; He D; Cui X; Tian S; Yin H; Song B
    Medicine (Baltimore); 2020 Mar; 99(10):e19428. PubMed ID: 32150094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm-enhanced artificial neural network-based CT radiomics signature.
    Chen X; He L; Li Q; Liu L; Li S; Zhang Y; Liu Z; Huang Y; Mao Y; Chen X
    Eur Radiol; 2023 Jan; 33(1):11-22. PubMed ID: 35771245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?
    Yang L; Dong D; Fang M; Zhu Y; Zang Y; Liu Z; Zhang H; Ying J; Zhao X; Tian J
    Eur Radiol; 2018 May; 28(5):2058-2067. PubMed ID: 29335867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer.
    Xing X; Li D; Peng J; Shu Z; Zhang Y; Song Q
    Sci Rep; 2024 May; 14(1):11760. PubMed ID: 38783014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics features based on internal and marginal areas of the tumor for the preoperative prediction of microsatellite instability status in colorectal cancer.
    Ma Y; Lin C; Liu S; Wei Y; Ji C; Shi F; Lin F; Zhou Z
    Front Oncol; 2022; 12():1020349. PubMed ID: 36276101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and radiomics analysis by computed tomography in colorectal liver metastases patients for RAS mutational status prediction.
    Granata V; Fusco R; Setola SV; Brunese MC; Di Mauro A; Avallone A; Ottaiano A; Normanno N; Petrillo A; Izzo F
    Radiol Med; 2024 Jul; 129(7):957-966. PubMed ID: 38761342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features.
    Sun Z; Hu S; Ge Y; Wang J; Duan S; Song J; Hu C; Li Y
    J Xray Sci Technol; 2020; 28(3):449-459. PubMed ID: 32176676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study.
    Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X
    Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning model to preoperatively predict T2/T3 staging of laryngeal and hypopharyngeal cancer based on the CT radiomic signature.
    Liu Q; Liu S; Mao Y; Kang X; Yu M; Chen G
    Eur Radiol; 2024 Aug; 34(8):5349-5359. PubMed ID: 38206403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.