BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30930062)

  • 1. Canalicular fluid flow induced by loading waveforms: A comparative analysis.
    Kumar R; Tiwari AK; Tripathi D; Shrivas NV; Nizam F
    J Theor Biol; 2019 Jun; 471():59-73. PubMed ID: 30930062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico modeling of bone adaptation to rest-inserted loading: Strain energy density versus fluid flow as stimulus.
    Tiwari AK; Kumar R; Tripathi D; Badhyal S
    J Theor Biol; 2018 Jun; 446():110-127. PubMed ID: 29534894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling for osteogenic potential assessment of physical exercises based on loading-induced mechanobiological environments in cortical bone remodeling.
    Mertiya AS; Tiwari AK; Mishra A; Main RP; Tripathi D; Tiwari A
    Biomech Model Mechanobiol; 2023 Feb; 22(1):281-295. PubMed ID: 36305993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation, validation, and prediction of loading-induced mineral apposition rates at endocortical and periosteal bone surfaces based on fluid velocity and pore pressure.
    Singh S; Singh SJ; Prasad J
    Bone Rep; 2023 Dec; 19():101729. PubMed ID: 38089647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modelling of bone's adaptation: the role of normal strain, shear strain and fluid flow.
    Tiwari AK; Prasad J
    Biomech Model Mechanobiol; 2017 Apr; 16(2):395-410. PubMed ID: 27585446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of physiological loading induced interstitial fluid motion in muscle standardized femur: Healthy vs. osteoporotic bone.
    Shrivas NV; Badhyal S; Tiwari AK; Mishra A; Tripathi D; Patil S
    Comput Methods Programs Biomed; 2023 Jul; 237():107592. PubMed ID: 37209515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone.
    Gatti V; Azoulay EM; Fritton SP
    J Biomech; 2018 Jan; 66():127-136. PubMed ID: 29217091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical variations in cortical bone surface permeability: Tibia versus femur.
    Kumar R; Tiwari AK; Tripathi D; Main RP; Kumar N; Sihota P; Ambwani S; Sharma NN
    J Mech Behav Biomed Mater; 2021 Jan; 113():104122. PubMed ID: 33125957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-layered poroelastic slab model under cyclic loading for a single osteon.
    Chen Y; Wang W; Ding S; Wang X; Chen Q; Li X
    Biomed Eng Online; 2018 Jul; 17(1):97. PubMed ID: 30016971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling cortical bone adaptation using strain gradients.
    Tiwari AK; Goyal A; Prasad J
    Proc Inst Mech Eng H; 2021 Jun; 235(6):636-654. PubMed ID: 33754910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling bone formation in the aged skeleton via rest-inserted mechanical loading.
    Srinivasan S; Agans SC; King KA; Moy NY; Poliachik SL; Gross TS
    Bone; 2003 Dec; 33(6):946-55. PubMed ID: 14678854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological Loading-Induced Interstitial Fluid Dynamics in Osteon of Osteogenesis Imperfecta Bone.
    Shrivas NV; Tiwari AK; Kumar R; Patil S; Tripathi D; Badhyal S
    J Biomech Eng; 2021 Aug; 143(8):. PubMed ID: 33834233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Canalicular fluid flow induced by bending of a long bone.
    Srinivasan S; Gross TS
    Med Eng Phys; 2000 Mar; 22(2):127-33. PubMed ID: 10854966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing the relationship between loading parameters and bone adaptation.
    Tiwari AK; Kumar N
    Med Eng Phys; 2018 Jun; 56():16-26. PubMed ID: 29685858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia.
    Yang H; Embry RE; Main RP
    PLoS One; 2017; 12(1):e0169519. PubMed ID: 28076363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting cortical bone adaptation to axial loading in the mouse tibia.
    Pereira AF; Javaheri B; Pitsillides AA; Shefelbine SJ
    J R Soc Interface; 2015 Sep; 12(110):0590. PubMed ID: 26311315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.
    Kameo Y; Ootao Y; Ishihara M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):361-70. PubMed ID: 26081726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of tibial structure and strength to axial compression depends on loading history in both C57BL/6 and BALB/c mice.
    Holguin N; Brodt MD; Sanchez ME; Kotiya AA; Silva MJ
    Calcif Tissue Int; 2013 Sep; 93(3):211-21. PubMed ID: 23708853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.