These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30930062)

  • 21. Rest-inserted loading rapidly amplifies the response of bone to small increases in strain and load cycles.
    Srinivasan S; Ausk BJ; Poliachik SL; Warner SE; Richardson TS; Gross TS
    J Appl Physiol (1985); 2007 May; 102(5):1945-52. PubMed ID: 17255366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading.
    Lee KC; Maxwell A; Lanyon LE
    Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element.
    De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA
    Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice.
    Castillo AB; Alam I; Tanaka SM; Levenda J; Li J; Warden SJ; Turner CH
    Bone; 2006 Nov; 39(5):1087-1096. PubMed ID: 16793358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.
    Kwon RY; Meays DR; Meilan AS; Jones J; Miramontes R; Kardos N; Yeh JC; Frangos JA
    PLoS One; 2012; 7(3):e33336. PubMed ID: 22413015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signalling molecule transport analysis in lacunar-canalicular system.
    Kumar R; Tiwari AK; Tripathi D; Sharma NN
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1879-1896. PubMed ID: 32112154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of load repetition in bone mechanotransduction using poroelastic finite-element models: the impact of permeability.
    Pereira AF; Shefelbine SJ
    Biomech Model Mechanobiol; 2014 Jan; 13(1):215-25. PubMed ID: 23689800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice.
    Svensson J; Windahl SH; Saxon L; Sjögren K; Koskela A; Tuukkanen J; Ohlsson C
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E138-44. PubMed ID: 27221117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer model of non-Newtonian canalicular fluid flow in lacunar-canalicular system of bone tissue.
    Kumar R
    Comput Methods Biomech Biomed Engin; 2024 Feb; ():1-15. PubMed ID: 38372236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats.
    Mosley JR; Lanyon LE
    Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of biomechanical stress on bones in animals.
    Burr DB; Robling AG; Turner CH
    Bone; 2002 May; 30(5):781-6. PubMed ID: 11996920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disuse rescues the age-impaired adaptive response to external loading in mice.
    Meakin LB; Delisser PJ; Galea GL; Lanyon LE; Price JS
    Osteoporos Int; 2015 Nov; 26(11):2703-8. PubMed ID: 25920749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rest insertion combined with high-frequency loading enhances osteogenesis.
    LaMothe JM; Zernicke RF
    J Appl Physiol (1985); 2004 May; 96(5):1788-93. PubMed ID: 14707150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.
    Kwon RY; Meays DR; Tang WJ; Frangos JA
    J Bone Miner Res; 2010 Aug; 25(8):1798-807. PubMed ID: 20200992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry.
    Lambers FM; Schulte FA; Kuhn G; Webster DJ; Müller R
    Bone; 2011 Dec; 49(6):1340-50. PubMed ID: 21964411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading.
    Robling AG; Burr DB; Turner CH
    J Bone Miner Res; 2000 Aug; 15(8):1596-602. PubMed ID: 10934659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.