These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 30930162)
1. Drugging the Folate Pathway in Mycobacterium tuberculosis: The Role of Multi-targeting Agents. Hajian B; Scocchera E; Shoen C; Krucinska J; Viswanathan K; G-Dayanandan N; Erlandsen H; Estrada A; Mikušová K; Korduláková J; Cynamon M; Wright D Cell Chem Biol; 2019 Jun; 26(6):781-791.e6. PubMed ID: 30930162 [TBL] [Abstract][Full Text] [Related]
2. The Dual-Targeting Activity of the Metabolite Substrate of Para-amino Salicyclic Acid in the Mycobacterial Folate Pathway: Atomistic and Structural Perspectives. Agoni C; Ramharack P; Salifu EY; Soliman MES Protein J; 2020 Apr; 39(2):106-117. PubMed ID: 32086691 [TBL] [Abstract][Full Text] [Related]
3. Structural Insights into Mycobacterium tuberculosis Rv2671 Protein as a Dihydrofolate Reductase Functional Analogue Contributing to para-Aminosalicylic Acid Resistance. Cheng YS; Sacchettini JC Biochemistry; 2016 Feb; 55(7):1107-19. PubMed ID: 26848874 [TBL] [Abstract][Full Text] [Related]
5. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. Zheng J; Rubin EJ; Bifani P; Mathys V; Lim V; Au M; Jang J; Nam J; Dick T; Walker JR; Pethe K; Camacho LR J Biol Chem; 2013 Aug; 288(32):23447-56. PubMed ID: 23779105 [TBL] [Abstract][Full Text] [Related]
6. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis. Nixon MR; Saionz KW; Koo MS; Szymonifka MJ; Jung H; Roberts JP; Nandakumar M; Kumar A; Liao R; Rustad T; Sacchettini JC; Rhee KY; Freundlich JS; Sherman DR Chem Biol; 2014 Jul; 21(7):819-30. PubMed ID: 24954008 [TBL] [Abstract][Full Text] [Related]
7. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Chakraborty S; Gruber T; Barry CE; Boshoff HI; Rhee KY Science; 2013 Jan; 339(6115):88-91. PubMed ID: 23118010 [TBL] [Abstract][Full Text] [Related]
8. Deletion of Yang SS; Hu YB; Wang XD; Gao YR; Li K; Zhang XE; Chen SY; Zhang TY; Gu J; Deng JY Antimicrob Agents Chemother; 2017 Oct; 61(10):. PubMed ID: 28717039 [TBL] [Abstract][Full Text] [Related]
9. Targeting intracellular p-aminobenzoic acid production potentiates the anti-tubercular action of antifolates. Thiede JM; Kordus SL; Turman BJ; Buonomo JA; Aldrich CC; Minato Y; Baughn AD Sci Rep; 2016 Dec; 6():38083. PubMed ID: 27905500 [TBL] [Abstract][Full Text] [Related]
10. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors. Shelke RU; Degani MS; Raju A; Ray MK; Rajan MG Arch Pharm (Weinheim); 2016 Aug; 349(8):602-13. PubMed ID: 27320965 [TBL] [Abstract][Full Text] [Related]
11. Mycobacterium tuberculosis folate metabolism and the mechanistic basis for para-aminosalicylic acid susceptibility and resistance. Minato Y; Thiede JM; Kordus SL; McKlveen EJ; Turman BJ; Baughn AD Antimicrob Agents Chemother; 2015 Sep; 59(9):5097-106. PubMed ID: 26033719 [TBL] [Abstract][Full Text] [Related]
12. Potency boost of a Aragaw WW; Lee BM; Yang X; Zimmerman MD; Gengenbacher M; Dartois V; Chui WK; Jackson CJ; Dick T Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161270 [TBL] [Abstract][Full Text] [Related]
13. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis. Urban M; Šlachtová V; Brulíková L Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979 [TBL] [Abstract][Full Text] [Related]
14. Identification of novel selective Mtb-DHFR inhibitors as antitubercular agents through structure-based computational techniques. Sharma K; Neshat N; Sharma S; Giri N; Srivastava A; Almalki F; Saifullah K; Alam MM; Shaquiquzzaman M; Akhter M Arch Pharm (Weinheim); 2020 Feb; 353(2):e1900287. PubMed ID: 31867798 [TBL] [Abstract][Full Text] [Related]
15. Folate Pathway Inhibitors, An Underestimated and Underexplored Molecular Target for New Anti-tuberculosis Agents. Vassiliades SV; Borges LG; Giarolla J; Parise-Filho R Mini Rev Med Chem; 2023; 23(17):1711-1732. PubMed ID: 36744693 [TBL] [Abstract][Full Text] [Related]
16. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Rengarajan J; Sassetti CM; Naroditskaya V; Sloutsky A; Bloom BR; Rubin EJ Mol Microbiol; 2004 Jul; 53(1):275-82. PubMed ID: 15225321 [TBL] [Abstract][Full Text] [Related]
17. Genetic and metabolic analysis of folate salvage in the human malaria parasite Plasmodium falciparum. Wang P; Nirmalan N; Wang Q; Sims PF; Hyde JE Mol Biochem Parasitol; 2004 May; 135(1):77-87. PubMed ID: 15287589 [TBL] [Abstract][Full Text] [Related]
18. Expansion of a novel lead targeting M. tuberculosis DHFR as antitubercular agents. Sharma K; Tanwar O; Deora GS; Ali S; Alam MM; Zaman MS; Krishna VS; Sriram D; Akhter M Bioorg Med Chem; 2019 Apr; 27(7):1421-1429. PubMed ID: 30827867 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological validation of dihydrofolate reductase as a drug target in Aragaw WW; Negatu DA; Bungard CJ; Dartois VA; Marrouni AE; Nickbarg EB; Olsen DB; Warrass R; Dick T Antimicrob Agents Chemother; 2024 Jan; 68(1):e0071723. PubMed ID: 38018963 [TBL] [Abstract][Full Text] [Related]
20. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Tomioka H Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]