These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30930399)

  • 1. [Prediction of Wettability and Adhesion of Lotion to Skin Based on the OWRK Method].
    Hashizaki K; Sunaga K; Oda Y; Bashuda M; Imai M; Goto Y; Taguchi H; Saito Y; Fujii M
    Yakugaku Zasshi; 2019; 139(4):635-640. PubMed ID: 30930399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Comparison of Surface Free Energy of Human, Yucatan Micropig, and Hairless Mouse Skins and Influence of Surfactant on Surface Free Energy of the Skin.
    Fujii M; Kato K; Imai M; Kuwabara H; Awano M; Hashizaki K; Taguchi H
    Biol Pharm Bull; 2019 Feb; 42(2):295-298. PubMed ID: 30504641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wettability of pear leaves from three regions characterized at different stages after flowering using the OWRK method.
    Gao Y; Guo R; Fan R; Liu Z; Kong W; Zhang P; Du FP
    Pest Manag Sci; 2018 Aug; 74(8):1804-1809. PubMed ID: 29389059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method for Measuring the Surface Free Energy of Topical Semi-solid Dosage Forms.
    Hashizaki K; Hoshii Y; Ikeuchi K; Imai M; Taguchi H; Goto Y; Fujii M
    Chem Pharm Bull (Tokyo); 2021; 69(11):1083-1087. PubMed ID: 34719590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wettability of bare and fluorinated silanes: a combined approach based on surface free energy evaluations and dipole moment calculations.
    Cappelletti G; Ardizzone S; Meroni D; Soliveri G; Ceotto M; Biaggi C; Benaglia M; Raimondi L
    J Colloid Interface Sci; 2013 Jan; 389(1):284-91. PubMed ID: 23041024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of Aceria litchii (Keifer) infestation on the surface properties of litchi leaf hosts.
    Song Q; Zheng J; Chen S; Lan Y; Li H; Zeng L; Yue X
    Pest Manag Sci; 2024 Jun; 80(6):2647-2657. PubMed ID: 38394076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet granulation end point prediction using dimensionless numbers in a mixer torque rheometer: Relationship between capillary and Weber numbers and the optimal wet mass consistency.
    Ly A; Esma Achouri I; Gosselin R; Abatzoglou N
    Int J Pharm; 2021 Aug; 605():120823. PubMed ID: 34171431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Different Surface Energy Models to Assess the Interactions between Antiviral Coating Films and phi6 Model Virus.
    Peršin Fratnik Z; Plohl O; Kokol V; Fras Zemljič L
    J Funct Biomater; 2023 Apr; 14(4):. PubMed ID: 37103322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetting properties of poultry litter and derived hydrochar.
    Mau V; Arye G; Gross A
    PLoS One; 2018; 13(10):e0206299. PubMed ID: 30365507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Surface Characteristics of Rare Earth Minerals Using Contact Angle Measurements, Atomic Force Microscopy, and Inverse Gas Chromatography.
    Khodakarami M; Alagha L; Burnett DJ
    ACS Omega; 2019 Aug; 4(8):13319-13329. PubMed ID: 31460460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate-Independent Surface Energy Tuning via Siloxane Treatment for Printed Electronics.
    Schlisske S; Held M; Rödlmeier T; Menghi S; Fuchs K; Ruscello M; Morfa AJ; Lemmer U; Hernandez-Sosa G
    Langmuir; 2018 May; 34(21):5964-5970. PubMed ID: 29718677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the wettability and surface energy of a pharmaceutical powder by liquid penetration.
    Buckton G; Newton JM
    J Pharm Pharmacol; 1985 Sep; 37(9):605-9. PubMed ID: 2867178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on the changes in wettability of rice (Oryza sativa.) leaf surfaces at different development stages using the OWRK method.
    Zhu YQ; Yu CX; Li Y; Zhu QQ; Zhou L; Cao C; Yu TT; Du FP
    Pest Manag Sci; 2014 Mar; 70(3):462-9. PubMed ID: 23765738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting and adhesion evaluation of cosmetic ingredients and products: correlation of in vitro-in vivo contact angle measurements.
    Capra P; Musitelli G; Perugini P
    Int J Cosmet Sci; 2017 Aug; 39(4):393-401. PubMed ID: 28067963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface free energy of the human skin and its critical surface tension of wetting in the skin/surfactant aqueous solution/air system.
    Krawczyk J
    Skin Res Technol; 2015 May; 21(2):214-23. PubMed ID: 25123912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling liquid penetration into porous materials based on substrate and liquid surface energies.
    Waldner C; Hirn U
    J Colloid Interface Sci; 2023 Jun; 640():445-455. PubMed ID: 36870220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of physical (roughness) and chemical (dielectric constant) leaf surface properties relevant to wettability and adhesion.
    Nairn JJ; Forster WA; van Leeuwen RM
    Pest Manag Sci; 2011 Dec; 67(12):1562-70. PubMed ID: 21681916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Surface Wettability of Mineral Rock Particles by an Improved Washburn Method.
    Wang Z; Chu Y; Zhao G; Yin Z; Kuang T; Yan F; Zhang L; Zhang L
    ACS Omega; 2023 May; 8(17):15721-15729. PubMed ID: 37151559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.