BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 3093059)

  • 1. Dansyl lysine, a new probe for assaying heat-induced cell killing and thermotolerance in vitro and in vivo.
    Fisher G; Rice GC; Hahn GM
    Cancer Res; 1986 Oct; 46(10):5064-7. PubMed ID: 3093059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of mammalian cell killing by heat shock to intramembranous particle aggregation and lateral phase separation using fluorescence-activated cell sorting.
    Rice GC; Fisher KA; Fisher GA; Hahn GM
    Radiat Res; 1987 Nov; 112(2):351-64. PubMed ID: 3120236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of heat shock protein synthesis in murine tumors during the development of thermotolerance.
    Li GC; Mak JY
    Cancer Res; 1985 Aug; 45(8):3816-24. PubMed ID: 4016752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of cellular, microenvironmental, and growth parameters on thermotolerance kinetics in vivo in human melanoma xenografts.
    Rofstad EK
    Cancer Res; 1989 Sep; 49(18):5027-32. PubMed ID: 2766273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A generalized concept for cell killing by heat. Effect of acutely induced thermotolerance and decay of thermosensitization.
    Jung H
    Radiat Res; 1994 Sep; 139(3):280-9. PubMed ID: 8073110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo.
    Henderson BW; Waldow SM; Potter WR; Dougherty TJ
    Cancer Res; 1985 Dec; 45(12 Pt 1):6071-7. PubMed ID: 4063964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermotolerance and profile of protein synthesis in murine bone marrow cells after heat shock.
    Mivechi NF; Li GC
    Cancer Res; 1985 Aug; 45(8):3843-9. PubMed ID: 4016754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell kill and tumor control after heat treatment with and without vascular occlusion in RIF-1 tumors.
    Wallen CA; Colby TV; Stewart JR
    Radiat Res; 1986 May; 106(2):215-23. PubMed ID: 3704113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat-induced changes in intracellular sodium and membrane potential: lack of a role in cell killing and thermotolerance.
    Amorino GP; Fox MH
    Radiat Res; 1996 Sep; 146(3):283-92. PubMed ID: 8752306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A predictive assay for human tumor cellular response to hyperthermia using dansyl lysine staining and flow cytometry.
    Woo SY; Rice GC; Kapp DS; Hahn GM
    Int J Radiat Oncol Biol Phys; 1988 Feb; 14(2):361-5. PubMed ID: 2448273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat sensitivity, thermotolerance, and profile of heat shock protein synthesis of human myelogenous leukemias.
    Mivechi NF
    Cancer Res; 1989 Apr; 49(8):1954-8. PubMed ID: 2702637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of dansyl lysine to assess heat damage and thermotolerance of normal tissues.
    Sekiguchi R; Rice GC; Hahn GM
    Int J Radiat Oncol Biol Phys; 1988 May; 14(5):983-8. PubMed ID: 2452147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of oxidative stress induced by cysteamine upon the induction and development of thermotolerance in Chinese hamster ovary cells.
    Issels RD; Bourier S; Böning B; Li GC; Mak JJ; Wilmanns W
    Cancer Res; 1987 May; 47(9):2268-74. PubMed ID: 3567920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Thermotolerance in normal and tumor tissues].
    Ohtsuka K
    Gan No Rinsho; 1986 Oct; 32(13):1671-7. PubMed ID: 3795486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo.
    Koishi M; Yokota S; Mae T; Nishimura Y; Kanamori S; Horii N; Shibuya K; Sasai K; Hiraoka M
    Clin Cancer Res; 2001 Jan; 7(1):215-9. PubMed ID: 11205912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor responses following multiple hyperthermia and X-ray treatments: role of thermotolerance at the cellular level.
    Meyer JL; Van Kersen I; Hahn GM
    Cancer Res; 1986 Nov; 46(11):5691-5. PubMed ID: 3756917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hyperthermia (45 degrees C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance.
    Stevenson MA; Calderwood SK; Hahn GM
    Cancer Res; 1987 Jul; 47(14):3712-7. PubMed ID: 3109731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.