These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30930618)

  • 1. Comparison of Measured and Simulated Urban Soil Hydrologic Properties.
    Schifman LA; Shuster WD
    J Hydrol Eng; 2019 Jan; 24(1):. PubMed ID: 30930618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Managing Uncertainty in Runoff Estimation with the U.S. Environmental Protection Agency National Stormwater Calculator.
    Schifman LA; Tryby ME; Berner J; Shuster WD
    J Am Water Resour Assoc; 2019; 54(1):148-159. PubMed ID: 31631958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil infiltration rates are underestimated by models in an urban watershed in central North Carolina, USA.
    Bergeson CB; Martin KL; Doll B; Cutts BB
    J Environ Manage; 2022 Jul; 313():115004. PubMed ID: 35405544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of trees in urban stormwater management.
    Berland A; Shiflett SA; Shuster WD; Garmestani AS; Goddard HC; Herrmann DL; Hopton ME
    Landsc Urban Plan; 2017 Jun; 162():167-177. PubMed ID: 30220756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the hydrologic and economic efficacy of stormwater utility credit programs for US single family residences.
    Kertesz R; Green OO; Shuster WD
    Water Sci Technol; 2014; 70(11):1746-54. PubMed ID: 25500463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy.
    Selbig WR; Loheide SP; Shuster W; Scharenbroch BC; Coville RC; Kruegler J; Avery W; Haefner R; Nowak D
    Sci Total Environ; 2022 Feb; 806(Pt 3):151296. PubMed ID: 34736755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing roadside runoff: Tillage and compost improve stormwater mitigation in urban soils.
    Rivers EN; Heitman JL; McLaughlin RA; Howard AM
    J Environ Manage; 2021 Feb; 280():111732. PubMed ID: 33298391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating global land-cover and soil datasets to update saturated hydraulic conductivity parameterization in hydrologic modeling.
    Trinh T; Kavvas ML; Ishida K; Ercan A; Chen ZQ; Anderson ML; Ho C; Nguyen T
    Sci Total Environ; 2018 Aug; 631-632():279-288. PubMed ID: 29525707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of soil data resolution on SWAT model stream flow and water quality predictions.
    Geza M; McCray JE
    J Environ Manage; 2008 Aug; 88(3):393-406. PubMed ID: 17475392
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Shuster WD; Schifman L; Kelleher C; Golden HE; Bhaskar AS; Parolari AJ; Stewart RD; Herrmann DL
    J Am Water Resour Assoc; 2021 Jun; 57(3):493-504. PubMed ID: 35450168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative calculation of stormwater regulation capacity and collaborative configuration of sponge facilities in urban high-density built-up areas.
    Jiang C; Li J; Gao J; Lv P; Zhang Y
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):13571-13581. PubMed ID: 36136198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elemental Concentrations in Urban Green Stormwater Infrastructure Soils.
    Kondo MC; Sharma R; Plante AF; Yang Y; Burstyn I
    J Environ Qual; 2016 Jan; 45(1):107-18. PubMed ID: 26828166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A probabilistic approach to stormwater runoff control through permeable pavements beneath urban trees.
    Raimondi A; Marrazzo G; Sanfilippo U; Becciu G
    Sci Total Environ; 2023 Dec; 905():167196. PubMed ID: 37741400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Urban Hydrology and Green Infrastructure Using the AGWA Urban Tool and the KINEROS2 Model.
    Korgaonkar Y; Guertin DP; Goodrich DC; Unkrich C; Kepner WG; Burns IS
    Front Built Environ; 2018; 4(58):1-15. PubMed ID: 31531308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Hydrologic Role of Urban Green Space in Mitigating Flooding (Luohe, China).
    Bai T; Mayer AL; Shuster WD; Tian G
    Sustainability; 2018 Oct; 10(10):1-3584. PubMed ID: 32832105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a framework for stormwater management: leveraging ancillary benefits from urban greenspace.
    Hoover FA; Hopton ME
    Urban Ecosyst; 2019; 22(6):1139-1148. PubMed ID: 31844388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urban stormwater runoff: a new class of environmental flow problem.
    Walsh CJ; Fletcher TD; Burns MJ
    PLoS One; 2012; 7(9):e45814. PubMed ID: 23029257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the hydrologic effects of watershed-scale green roof implementation in the Pacific Northwest, United States.
    Barnhart B; Pettus P; Halama J; McKane R; Mayer P; Djang K; Brookes A; Moskal LM
    J Environ Manage; 2021 Jan; 277():111418. PubMed ID: 33080432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence factors and prediction of stormwater runoff of urban green space in Tianjin, China: laboratory experiment and quantitative theory model.
    Yang X; You XY; Ji M; Nima C
    Water Sci Technol; 2013; 67(4):869-76. PubMed ID: 23306267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realizing the opportunities of black carbon in urban soils: Implications for water quality management with green infrastructure.
    Schifman LA; Prues A; Gilkey K; Shuster WD
    Sci Total Environ; 2018 Dec; 644():1027-1035. PubMed ID: 30743816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.