These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 30930955)
21. Simultaneous identification of duplications, losses, and lateral gene transfers. Chen ZZ; Deng F; Wang L IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1515-28. PubMed ID: 22641711 [TBL] [Abstract][Full Text] [Related]
22. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees. Kordi M; Bansal MS IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1077-1090. PubMed ID: 28622673 [TBL] [Abstract][Full Text] [Related]
23. Inferring gene duplications, transfers and losses can be done in a discrete framework. Ranwez V; Scornavacca C; Doyon JP; Berry V J Math Biol; 2016 Jun; 72(7):1811-44. PubMed ID: 26337177 [TBL] [Abstract][Full Text] [Related]
24. Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Hahn MW Genome Biol; 2007; 8(7):R141. PubMed ID: 17634151 [TBL] [Abstract][Full Text] [Related]
25. Reconstruction of time-consistent species trees. Lafond M; Hellmuth M Algorithms Mol Biol; 2020; 15():16. PubMed ID: 32843891 [TBL] [Abstract][Full Text] [Related]
26. On the complexity of non-binary tree reconciliation with endosymbiotic gene transfer. Gascon M; El-Mabrouk N Algorithms Mol Biol; 2023 Jul; 18(1):9. PubMed ID: 37518001 [TBL] [Abstract][Full Text] [Related]
27. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Stolzer M; Lai H; Xu M; Sathaye D; Vernot B; Durand D Bioinformatics; 2012 Sep; 28(18):i409-i415. PubMed ID: 22962460 [TBL] [Abstract][Full Text] [Related]
28. Inferring incomplete lineage sorting, duplications, transfers and losses with reconciliations. Chan YB; Ranwez V; Scornavacca C J Theor Biol; 2017 Nov; 432():1-13. PubMed ID: 28801222 [TBL] [Abstract][Full Text] [Related]
30. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bansal MS; Alm EJ; Kellis M Bioinformatics; 2012 Jun; 28(12):i283-91. PubMed ID: 22689773 [TBL] [Abstract][Full Text] [Related]
31. Inferring Optimal Species Trees in the Presence of Gene Duplication and Loss: Beyond Rooted Gene Trees. Bayzid MS J Comput Biol; 2023 Feb; 30(2):161-175. PubMed ID: 36251762 [TBL] [Abstract][Full Text] [Related]
32. Phylogenetic analyses of human 1/2/8/20 paralogons suggest segmental duplications during animal evolution. Haq F; Saeed U; Khalid R; Qasim M; Mehmood M 3 Biotech; 2019 Jun; 9(6):233. PubMed ID: 31139548 [TBL] [Abstract][Full Text] [Related]
34. The duplication-loss small phylogeny problem: from cherries to trees. Andreotti S; Reinert K; Canzar S J Comput Biol; 2013 Sep; 20(9):643-59. PubMed ID: 24000925 [TBL] [Abstract][Full Text] [Related]
35. Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees. Wu YC; Rasmussen MD; Bansal MS; Kellis M Genome Res; 2014 Mar; 24(3):475-86. PubMed ID: 24310000 [TBL] [Abstract][Full Text] [Related]
36. Reconciliation of gene and species trees. Rusin LY; Lyubetskaya EV; Gorbunov KY; Lyubetsky VA Biomed Res Int; 2014; 2014():642089. PubMed ID: 24800245 [TBL] [Abstract][Full Text] [Related]
37. From gene trees to species trees II: species tree inference by minimizing deep coalescence events. Zhang L IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1685-91. PubMed ID: 21576759 [TBL] [Abstract][Full Text] [Related]
38. Reconstructing a SuperGeneTree minimizing reconciliation. Lafond M; Ouangraoua A; El-Mabrouk N BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S4. PubMed ID: 26451911 [TBL] [Abstract][Full Text] [Related]
39. A new fast method for inferring multiple consensus trees using k-medoids. Tahiri N; Willems M; Makarenkov V BMC Evol Biol; 2018 Apr; 18(1):48. PubMed ID: 29621975 [TBL] [Abstract][Full Text] [Related]