These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30930965)

  • 1. Trade-offs and synergies between yield, labor, profit, and risk in Malawian maize-based cropping systems.
    Komarek AM; Koo J; Haile B; Msangi S; Azzarri C
    Agron Sustain Dev; 2018; 38(3):32. PubMed ID: 30930965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of cropping system diversification on productivity and resource use efficiencies of smallholder farmers in south-central Bangladesh: a multi-criteria analysis.
    Emran SA; Krupnik TJ; Aravindakshan S; Kumar V; Pittelkow CM
    Agron Sustain Dev; 2022; 42(4):78. PubMed ID: 35945988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational trade-offs between yield increase and fertilizer inputs are essential for sustainable intensification: A case study in wheat-maize cropping systems in China.
    Li S; Lei Y; Zhang Y; Liu J; Shi X; Jia H; Wang C; Chen F; Chu Q
    Sci Total Environ; 2019 Aug; 679():328-336. PubMed ID: 31100561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana.
    Naab JB; Mahama GY; Yahaya I; Prasad PVV
    Front Plant Sci; 2017; 8():996. PubMed ID: 28680427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.
    Reckling M; Bergkvist G; Watson CA; Stoddard FL; Zander PM; Walker RL; Pristeri A; Toncea I; Bachinger J
    Front Plant Sci; 2016; 7():669. PubMed ID: 27242870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.
    Kermah M; Franke AC; Adjei-Nsiah S; Ahiabor BDK; Abaidoo RC; Giller KE
    Field Crops Res; 2017 Nov; 213():38-50. PubMed ID: 29104356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Participatory analysis of groundnut (Arachis hypogaea L.) cropping system and production constraints in Burkina Faso.
    Sinare B; Miningou A; Nebié B; Eleblu J; Kwadwo O; Traoré A; Zagre B; Desmae H
    J Ethnobiol Ethnomed; 2021 Jan; 17(1):2. PubMed ID: 33397411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pigeon Pea and Cowpea-Based Cropping Systems Improve Vesicular Arbuscular Mycorrhizal Fungal Colonisation of Subsequent Maize on the Alfisols in Central Malawi.
    Njira KOW; Semu E; Mrema JP; Nalivata PC
    Int J Microbiol; 2017; 2017():2096314. PubMed ID: 28584528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field study.
    Gao B; Ju X; Su F; Meng Q; Oenema O; Christie P; Chen X; Zhang F
    Sci Total Environ; 2014 Feb; 472():112-24. PubMed ID: 24291136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Legume-maize rotation effect on maize productivity and soil fertility parameters under selected agronomic practices in a sandy loam soil.
    Uzoh IM; Igwe CA; Okebalama CB; Babalola OO
    Sci Rep; 2019 Jun; 9(1):8539. PubMed ID: 31189881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data in brief on inter-row rainwater harvest and fertilizer application on yield of maize and pigeon-pea cropping systems in sub humid tropics.
    Saidia PS; Asch F; Kimaro AA; Germer J; Kahimba FC; Graef F; Semoka JMR; Rweyemamu CL
    Data Brief; 2019 Oct; 26():104456. PubMed ID: 31667228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smallholder Farms and the Potential for Sustainable Intensification.
    Mungai LM; Snapp S; Messina JP; Chikowo R; Smith A; Anders E; Richardson RB; Li G
    Front Plant Sci; 2016; 7():1720. PubMed ID: 27909444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing recommendations for increased productivity in cassava-maize intercropping systems in Southern Nigeria.
    Nwokoro CC; Kreye C; Necpalova M; Adeyemi O; Busari M; Tariku M; Tokula M; Olowokere F; Pypers P; Hauser S; Six J
    Field Crops Res; 2021 Oct; 272():108283. PubMed ID: 34840408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable intensification through rotations with grain legumes in Sub-Saharan Africa: A review.
    Franke AC; van den Brand GJ; Vanlauwe B; Giller KE
    Agric Ecosyst Environ; 2018 Jul; 261():172-185. PubMed ID: 29970946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N
    Kermah M; Franke AC; Adjei-Nsiah S; Ahiabor BDK; Abaidoo RC; Giller KE
    Agric Ecosyst Environ; 2018 Jul; 261():201-210. PubMed ID: 29970948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LEGUME-MAIZE ROTATION OR RELAY? OPTIONS FOR ECOLOGICAL INTENSIFICATION OF SMALLHOLDER FARMS IN THE GUINEA SAVANNA OF NORTHERN GHANA.
    Kermah M; Franke AC; Ahiabor BDK; Adjei-Nsiah S; Abaidoo RC; Giller KE
    Exp Agric; 2019; 55(5):673-691. PubMed ID: 33343019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of nitrogen-fertilizer and optimal plant population on the profitability of maize plots in the Wami River sub-basin, Tanzania: A bio-economic simulation approach.
    Kadigi IL; Richardson JW; Mutabazi KD; Philip D; Mourice SK; Mbungu W; Bizimana JC; Sieber S
    Agric Syst; 2020 Nov; 185():102948. PubMed ID: 32934435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing trade-offs among productive, economic, and environmental indicators of forage systems in southern Tibetan crop-livestock integration.
    Duan C; Yu C; Shi P; Huangqing D; Zhang X; Dai E
    Sci Total Environ; 2023 Jun; 876():162641. PubMed ID: 36921851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy and carbon budgeting of traditional land use change with groundnut based cropping system for environmental quality, resilient soil health and farmers income in eastern Indian Himalayas.
    Ansari MA; Saha S; Das A; Lal R; Das B; Choudhury BU; Roy SS; Sharma SK; Singh IM; Meitei CB; Changloi KL; Singh LS; Singh NA; Saraswat PK; Ramakrishna Y; Singh D; Hazarika S; Punitha P; Sandhu SK; Prakash N
    J Environ Manage; 2021 Sep; 293():112892. PubMed ID: 34062423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors contributing to farm-level productivity and household income generation in coastal Bangladesh's rice-based farming systems.
    Emran SA; Krupnik TJ; Aravindakshan S; Kumar V; Pittelkow CM
    PLoS One; 2021; 16(9):e0256694. PubMed ID: 34506515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.