These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30931178)

  • 1. Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogels.
    Wang L; Ago M; Borghei M; Ishaq A; Papageorgiou AC; Lundahl M; Rojas OJ
    ACS Sustain Chem Eng; 2019 Mar; 7(6):6013-6022. PubMed ID: 30931178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous Carbon Microfibers for Electroactive Materials Derived from Lignocellulose Nanofibrils.
    Wang L; Borghei M; Ishfaq A; Lahtinen P; Ago M; Papageorgiou AC; Lundahl MJ; Johansson LS; Kallio T; Rojas OJ
    ACS Sustain Chem Eng; 2020 Jun; 8(23):8549-8561. PubMed ID: 33282568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels.
    Lundahl MJ; Cunha AG; Rojo E; Papageorgiou AC; Rautkari L; Arboleda JC; Rojas OJ
    Sci Rep; 2016 Jul; 6():30695. PubMed ID: 27465828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions.
    Park CW; Park JS; Han SY; Lee EA; Kwon GJ; Seo YH; Gwon JG; Lee SY; Lee SH
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32325798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile fabrication of silver nanoparticles deposited cellulose microfiber nanocomposites for catalytic application.
    Xu P; Cen C; Chen N; Lin H; Wang Q; Xu N; Tang J; Teng Z
    J Colloid Interface Sci; 2018 Sep; 526():194-200. PubMed ID: 29729970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties.
    Wang L; Ezazi NZ; Liu L; Ajdary R; Xiang W; Borghei M; Santos HA; Rojas OJ
    RSC Adv; 2020 Aug; 10(49):29450-29459. PubMed ID: 35521134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow Filaments Synthesized by Dry-Jet Wet Spinning of Cellulose Nanofibrils: Structural Properties and Thermoregulation with Phase-Change Infills.
    Reyes G; Ajdary R; Yazdani MR; Rojas OJ
    ACS Appl Polym Mater; 2022 Apr; 4(4):2908-2916. PubMed ID: 35425902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coaxial Spinning of All-Cellulose Systems for Enhanced Toughness: Filaments of Oxidized Nanofibrils Sheathed in Cellulose II Regenerated from a Protic Ionic Liquid.
    Reyes G; Lundahl MJ; Alejandro-Martín S; Arteaga-Pérez LE; Oviedo C; King AWT; Rojas OJ
    Biomacromolecules; 2020 Feb; 21(2):878-891. PubMed ID: 31895545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene composite paper synergized with micro/nanocellulose-fiber and silk fibroin for flexible strain sensor.
    Li J; Yang F; Liu D; Han S; Li J; Sui G
    Int J Biol Macromol; 2023 Jun; 240():124439. PubMed ID: 37062378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of High Lignin Content on Oxidative Nanofibrillation of Wood Cell Wall.
    Jonasson S; Bünder A; Berglund L; Hertzberg M; Niittylä T; Oksman K
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33947163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastrong and flame-retardant microfibers via microfluidic wet spinning of phosphorylated cellulose nanofibrils.
    Ren N; Chen S; Cui M; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Nov; 296():119945. PubMed ID: 36087993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties.
    Park JS; Han SY; Bandi R; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Youe WJ; Gwon J; Park CW; Lee SH
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 - Manufacturing and properties of precursor fibres.
    Trogen M; Le ND; Sawada D; Guizani C; Lourençon TV; Pitkänen L; Sixta H; Shah R; O'Neill H; Balakshin M; Byrne N; Hummel M
    Carbohydr Polym; 2021 Jan; 252():117133. PubMed ID: 33183592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disassociated molecular orientation distributions of a composite cellulose-lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering.
    Svenningsson L; Bengtsson J; Jedvert K; Schlemmer W; Theliander H; Evenäs L
    Carbohydr Polym; 2021 Feb; 254():117293. PubMed ID: 33357862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible conductive hydrogel fabricated with polyvinyl alcohol, carboxymethyl chitosan, cellulose nanofibrils, and lignin-based carbon applied as strain and pressure sensor.
    Li M; Tu Q; Long X; Zhang Q; Jiang H; Chen C; Wang S; Min D
    Int J Biol Macromol; 2021 Jan; 166():1526-1534. PubMed ID: 33181212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Wet-Spun PEDOT:PSS Microfibers Integrating Thermal-Sensing and Joule Heating Functions for Smart Textiles.
    Li Y; Hu H; Salim T; Cheng G; Lam YM; Ding J
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive paper from lignocellulose wood microfibers coated with a nanocomposite of carbon nanotubes and conductive polymers.
    Agarwal M; Xing Q; Shim BS; Kotov N; Varahramyan K; Lvov Y
    Nanotechnology; 2009 May; 20(21):215602. PubMed ID: 19423933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Biosorbent From Hardwood Cellulose Nanofibrils Grafted With Poly(
    Yu YH; An L; Bae JH; Heo JW; Chen J; Jeong H; Kim YS
    Front Bioeng Biotechnol; 2021; 9():682070. PubMed ID: 34079792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filaments with Affinity Binding and Wet Strength Can Be Achieved by Spinning Bifunctional Cellulose Nanofibrils.
    Vuoriluoto M; Orelma H; Lundahl M; Borghei M; Rojas OJ
    Biomacromolecules; 2017 Jun; 18(6):1803-1813. PubMed ID: 28436646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.