These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30931206)

  • 1. A carrier velocity model for electrical detection of gas molecules.
    Hosseingholi Pourasl A; Ariffin SHS; Ahmadi MT; Ismail R; Gharaei N
    Beilstein J Nanotechnol; 2019; 10():644-653. PubMed ID: 30931206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving gas sensing properties of armchair graphene nanoribbons by oxygen-hydrogen terminated edges.
    Jamalzadeh Kheirabadi S; Ghayour R; Sanaee M
    Nanotechnology; 2019 Oct; 30(43):435501. PubMed ID: 31300615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical Approach to Study Sensing Properties of Graphene Based Gas Sensor.
    Hosseingholipourasl A; Hafizah Syed Ariffin S; Al-Otaibi YD; Akbari E; Hamid FK; Koloor SSR; Petrů M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of ammonia on ZrO
    Ayesh AI; El-Muraikhi MD
    J Mol Model; 2022 Dec; 29(1):15. PubMed ID: 36544072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Principles Simulations of Phenol and Methanol Detector Based on Pristine Graphene Nanosheet and Armchair Graphene Nanoribbons.
    Haroon Rashid M; Koel A; Rang T
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31216657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.
    Walia GK; Randhawa DKK
    J Mol Model; 2018 Mar; 24(4):94. PubMed ID: 29549500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric properties of armchair graphene nanoribbons with array characteristics.
    Kuo DMT
    RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Analytical Conductance Model for Gas Detection Based on a Zigzag Carbon Nanotube Sensor.
    Hosseingholipourasl A; Hafizah Syed Ariffin S; Ahmadi MT; Rahimian Koloor SS; Petrů M; Hamzah A
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of uniaxial strain on graphene nanoribbon carrier statistic.
    Johari Z; Ismail R
    Nanoscale Res Lett; 2013 Nov; 8(1):479. PubMed ID: 24229375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling.
    Wasfi A; Al Hamarna A; Al Shehhi OMH; Al Ameri HFM; Awwad F
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of trace level of hazardous phosgene gas on antimonene nanotube based on first-principles method.
    Nagarajan V; Chandiramouli R
    J Mol Graph Model; 2019 May; 88():32-40. PubMed ID: 30641455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N=8 Armchair Graphene Nanoribbons: Solution Synthesis and High Charge Carrier Mobility.
    Yao X; Zhang H; Kong F; Hinaut A; Pawlak R; Okuno M; Graf R; Horton PN; Coles SJ; Meyer E; Bogani L; Bonn M; Wang HI; Müllen K; Narita A
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202312610. PubMed ID: 37750665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study.
    Rashid MH; Koel A; Rang T
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response.
    Kou L; Frauenheim T; Chen C
    J Phys Chem Lett; 2014 Aug; 5(15):2675-81. PubMed ID: 26277962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Graphene-Based Wearable Gas and Chemical Sensors.
    Singh E; Meyyappan M; Nalwa HS
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34544-34586. PubMed ID: 28876901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric transport properties of armchair graphene nanoribbon heterostructures.
    Almeida PA; Martins GB
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen adsorption study. Formation of quantum dots on graphene nanoribbons within tight-binding approach.
    Kvashnin AG; Kvashnina OP; Kvashnin DG
    Nanotechnology; 2015 May; 26(17):175704. PubMed ID: 25835030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Selective Gas Sensors Based on Graphene Nanoribbons Grown by Chemical Vapor Deposition.
    Shekhirev M; Lipatov A; Torres A; Vorobeva NS; Harkleroad A; Lashkov A; Sysoev V; Sinitskii A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7392-7402. PubMed ID: 32011111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.
    Wakai T; Sakamoto S; Tomiya M
    J Phys Condens Matter; 2018 Jul; 30(26):265302. PubMed ID: 29770774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.
    Passi V; Gahoi A; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; Lemme MC
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9900-9903. PubMed ID: 29516716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.