These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 30931544)
1. Two-stage analysis for selecting fixed numbers of features in omics association studies. Kawabata T; Emoto R; Nishino J; Takahashi K; Matsui S Stat Med; 2019 Jul; 38(16):2956-2971. PubMed ID: 30931544 [TBL] [Abstract][Full Text] [Related]
2. Optimal design for high-throughput screening via false discovery rate control. Feng T; Basu P; Sun W; Ku HT; Mack WJ Stat Med; 2019 Jul; 38(15):2816-2827. PubMed ID: 30924183 [TBL] [Abstract][Full Text] [Related]
3. Empirical Bayes screening of many p-values with applications to microarray studies. Datta S; Datta S Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856 [TBL] [Abstract][Full Text] [Related]
4. Practical FDR-based sample size calculations in microarray experiments. Hu J; Zou F; Wright FA Bioinformatics; 2005 Aug; 21(15):3264-72. PubMed ID: 15932903 [TBL] [Abstract][Full Text] [Related]
5. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data. Jain N; Cho H; O'Connell M; Lee JK BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779 [TBL] [Abstract][Full Text] [Related]
6. Controlling false discovery rate for mediator selection in high-dimensional data. Dai R; Li R; Lee S; Liu Y Biometrics; 2024 Jul; 80(3):. PubMed ID: 39073774 [TBL] [Abstract][Full Text] [Related]
7. Optimal selection of markers for validation or replication from genome-wide association studies. Greenwood CM; Rangrej J; Sun L Genet Epidemiol; 2007 Jul; 31(5):396-407. PubMed ID: 17410553 [TBL] [Abstract][Full Text] [Related]
8. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures. Lu X; Perkins DL BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157 [TBL] [Abstract][Full Text] [Related]
9. Two-stage designs for experiments with a large number of hypotheses. Zehetmayer S; Bauer P; Posch M Bioinformatics; 2005 Oct; 21(19):3771-7. PubMed ID: 16091414 [TBL] [Abstract][Full Text] [Related]
10. Parametric bootstrap methods for testing multiplicative terms in GGE and AMMI models. Forkman J; Piepho HP Biometrics; 2014 Sep; 70(3):639-47. PubMed ID: 24588726 [TBL] [Abstract][Full Text] [Related]
11. False discovery rate control in two-stage designs. Zehetmayer S; Posch M BMC Bioinformatics; 2012 May; 13():81. PubMed ID: 22559038 [TBL] [Abstract][Full Text] [Related]
12. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies. Sun L; Craiu RV; Paterson AD; Bull SB Genet Epidemiol; 2006 Sep; 30(6):519-30. PubMed ID: 16800000 [TBL] [Abstract][Full Text] [Related]
13. A novel approach to minimize false discovery rate in genome-wide data analysis. Bei Y; Hong P BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S1. PubMed ID: 24564975 [TBL] [Abstract][Full Text] [Related]
14. Optimized multi-stage designs controlling the false discovery or the family-wise error rate. Zehetmayer S; Bauer P; Posch M Stat Med; 2008 Sep; 27(21):4145-60. PubMed ID: 18444249 [TBL] [Abstract][Full Text] [Related]
15. Estimating the false discovery rate using nonparametric deconvolution. van de Wiel MA; Kim KI Biometrics; 2007 Sep; 63(3):806-15. PubMed ID: 17825012 [TBL] [Abstract][Full Text] [Related]