These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 30932257)
21. p300-mediated acetylation increased the protein stability of HIPK2 and enhanced its tumor suppressor function. Choi JR; Lee SY; Shin KS; Choi CY; Kang SJ Sci Rep; 2017 Nov; 7(1):16136. PubMed ID: 29170424 [TBL] [Abstract][Full Text] [Related]
22. Targeted disruption of the murine homeodomain-interacting protein kinase-2 causes growth deficiency in vivo and cell cycle arrest in vitro. Trapasso F; Aqeilan RI; Iuliano R; Visone R; Gaudio E; Ciuffini L; Alder H; Paduano F; Pierantoni GM; Soddu S; Croce CM; Fusco A DNA Cell Biol; 2009 Apr; 28(4):161-7. PubMed ID: 19364276 [TBL] [Abstract][Full Text] [Related]
23. UHRF1 promotes aerobic glycolysis and proliferation via suppression of SIRT4 in pancreatic cancer. Hu Q; Qin Y; Ji S; Xu W; Liu W; Sun Q; Zhang Z; Liu M; Ni Q; Yu X; Xu X Cancer Lett; 2019 Jun; 452():226-236. PubMed ID: 30905812 [TBL] [Abstract][Full Text] [Related]
24. Crosstalk between NRF2 and HIPK2 shapes cytoprotective responses. Torrente L; Sanchez C; Moreno R; Chowdhry S; Cabello P; Isono K; Koseki H; Honda T; Hayes JD; Dinkova-Kostova AT; de la Vega L Oncogene; 2017 Nov; 36(44):6204-6212. PubMed ID: 28692050 [TBL] [Abstract][Full Text] [Related]
25. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. Agnew C; Liu L; Liu S; Xu W; You L; Yeung W; Kannan N; Jablons D; Jura N J Biol Chem; 2019 Sep; 294(37):13545-13559. PubMed ID: 31341017 [TBL] [Abstract][Full Text] [Related]
26. STK25-induced inhibition of aerobic glycolysis via GOLPH3-mTOR pathway suppresses cell proliferation in colorectal cancer. Wu F; Gao P; Wu W; Wang Z; Yang J; Di J; Jiang B; Su X J Exp Clin Cancer Res; 2018 Jul; 37(1):144. PubMed ID: 29996891 [TBL] [Abstract][Full Text] [Related]
27. TWIST1 transcriptionally regulates glycolytic genes to promote the Warburg metabolism in pancreatic cancer. Wang XX; Yin GQ; Zhang ZH; Rong ZH; Wang ZY; Du DD; Wang YD; Gao RX; Xian GZ Exp Cell Res; 2020 Jan; 386(1):111713. PubMed ID: 31705846 [TBL] [Abstract][Full Text] [Related]
28. Downregulation of HIPK2 increases resistance of bladder cancer cell to cisplatin by regulating Wip1. Lin J; Zhang Q; Lu Y; Xue W; Xu Y; Zhu Y; Hu X PLoS One; 2014; 9(5):e98418. PubMed ID: 24846322 [TBL] [Abstract][Full Text] [Related]
29. HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop. Saul VV; de la Vega L; Milanovic M; Krüger M; Braun T; Fritz-Wolf K; Becker K; Schmitz ML J Mol Cell Biol; 2013 Feb; 5(1):27-38. PubMed ID: 23000554 [TBL] [Abstract][Full Text] [Related]
30. PLA2G16 is a mutant p53/KLF5 transcriptional target and promotes glycolysis of pancreatic cancer. Xia W; Bai H; Deng Y; Yang Y J Cell Mol Med; 2020 Nov; 24(21):12642-12655. PubMed ID: 32985124 [TBL] [Abstract][Full Text] [Related]
31. STK31 regulates the proliferation and cell cycle of lung cancer cells via the Wnt/β‑catenin pathway and feedback regulation by c‑myc. Xiong J; Xing S; Dong Z; Niu L; Xu Q; Liu P; Yang P Oncol Rep; 2020 Feb; 43(2):395-404. PubMed ID: 31894338 [TBL] [Abstract][Full Text] [Related]
33. miR-147b is an oncomiR acting synergistically with HIPK2 to promote pancreatic carcinogenesis. Wang G; Ma Z; Song C; Wang X; Zhou Z Cell Signal; 2023 Nov; 111():110840. PubMed ID: 37543099 [TBL] [Abstract][Full Text] [Related]
34. FBW7 (F-box and WD Repeat Domain-Containing 7) Negatively Regulates Glucose Metabolism by Targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) Axis in Pancreatic Cancer. Ji S; Qin Y; Liang C; Huang R; Shi S; Liu J; Jin K; Liang D; Xu W; Zhang B; Liu L; Liu C; Xu J; Ni Q; Chiao PJ; Li M; Yu X Clin Cancer Res; 2016 Aug; 22(15):3950-60. PubMed ID: 26983463 [TBL] [Abstract][Full Text] [Related]
35. Regulation of homeodomain-interacting protein kinase 2 (HIPK2) effector function through dynamic small ubiquitin-related modifier-1 (SUMO-1) modification. Hofmann TG; Jaffray E; Stollberg N; Hay RT; Will H J Biol Chem; 2005 Aug; 280(32):29224-32. PubMed ID: 15958389 [TBL] [Abstract][Full Text] [Related]
36. The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Asano T; Yao Y; Zhu J; Li D; Abbruzzese JL; Reddy SA Oncogene; 2004 Nov; 23(53):8571-80. PubMed ID: 15467756 [TBL] [Abstract][Full Text] [Related]
37. Klotho negatively regulated aerobic glycolysis in colorectal cancer via ERK/HIF1α axis. Li Q; Li Y; Liang L; Li J; Luo D; Liu Q; Cai S; Li X Cell Commun Signal; 2018 Jun; 16(1):26. PubMed ID: 29884183 [TBL] [Abstract][Full Text] [Related]
38. Cardiomyocyte Homeodomain-Interacting Protein Kinase 2 Maintains Basal Cardiac Function via Extracellular Signal-Regulated Kinase Signaling. Guo Y; Sui JY; Kim K; Zhang Z; Qu XA; Nam YJ; Willette RN; Barnett JV; Knollmann BC; Force T; Lal H Circulation; 2019 Nov; 140(22):1820-1833. PubMed ID: 31581792 [TBL] [Abstract][Full Text] [Related]
39. miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Hua S; Lei L; Deng L; Weng X; Liu C; Qi X; Wang S; Zhang D; Zou X; Cao C; Liu L; Wu D Oncogene; 2018 Mar; 37(12):1624-1636. PubMed ID: 29335523 [TBL] [Abstract][Full Text] [Related]
40. Homeodomain-interacting protein kinase 2 regulates DNA damage response through interacting with heterochromatin protein 1γ. Akaike Y; Kuwano Y; Nishida K; Kurokawa K; Kajita K; Kano S; Masuda K; Rokutan K Oncogene; 2015 Jun; 34(26):3463-73. PubMed ID: 25151962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]