These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 30932357)
1. Development of a novel, high-throughput screening tool for efficient perfusion-based cell culture process development. Gagliardi TM; Chelikani R; Yang Y; Tuozzolo G; Yuan H Biotechnol Prog; 2019 Jul; 35(4):e2811. PubMed ID: 30932357 [TBL] [Abstract][Full Text] [Related]
2. Establishment and optimization of a high-throughput mimic perfusion model in ambr Jin L; Wang ZS; Cao Y; Sun RQ; Zhou H; Cao RY Biotechnol Lett; 2021 Feb; 43(2):423-433. PubMed ID: 33185810 [TBL] [Abstract][Full Text] [Related]
3. Scale-down model qualification of ambr® 250 high-throughput mini-bioreactor system for two commercial-scale mAb processes. Manahan M; Nelson M; Cacciatore JJ; Weng J; Xu S; Pollard J Biotechnol Prog; 2019 Nov; 35(6):e2870. PubMed ID: 31207168 [TBL] [Abstract][Full Text] [Related]
4. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development. Xu P; Clark C; Ryder T; Sparks C; Zhou J; Wang M; Russell R; Scott C Biotechnol Prog; 2017 Mar; 33(2):478-489. PubMed ID: 27977912 [TBL] [Abstract][Full Text] [Related]
5. Development and application of a high-throughput platform for perfusion-based cell culture processes. Villiger-Oberbek A; Yang Y; Zhou W; Yang J J Biotechnol; 2015 Oct; 212():21-9. PubMed ID: 26197419 [TBL] [Abstract][Full Text] [Related]
6. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization. Velez-Suberbie ML; Betts JPJ; Walker KL; Robinson C; Zoro B; Keshavarz-Moore E Biotechnol Prog; 2018 Jan; 34(1):58-68. PubMed ID: 28748655 [TBL] [Abstract][Full Text] [Related]
7. Semi-continuous scale-down models for clone and operating parameter screening in perfusion bioreactors. Bielser JM; Domaradzki J; Souquet J; Broly H; Morbidelli M Biotechnol Prog; 2019 May; 35(3):e2790. PubMed ID: 30773840 [TBL] [Abstract][Full Text] [Related]
8. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization. Markert S; Joeris K Biotechnol Bioeng; 2017 Jan; 114(1):113-121. PubMed ID: 27399304 [TBL] [Abstract][Full Text] [Related]
9. Repurposing fed-batch media and feeds for highly productive CHO perfusion processes. Kuiper M; Spencer C; Fäldt E; Vuillemez A; Holmes W; Samuelsson T; Gruber D; Castan A Biotechnol Prog; 2019 Jul; 35(4):e2821. PubMed ID: 30985083 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopy integration to miniature bioreactors and large scale production bioreactors-Increasing current capabilities and model transfer. Rowland-Jones RC; Graf A; Woodhams A; Diaz-Fernandez P; Warr S; Soeldner R; Finka G; Hoehse M Biotechnol Prog; 2021 Jan; 37(1):e3074. PubMed ID: 32865874 [TBL] [Abstract][Full Text] [Related]
11. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
12. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development. Janakiraman V; Kwiatkowski C; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2015; 31(6):1623-32. PubMed ID: 26317495 [TBL] [Abstract][Full Text] [Related]
13. An automated high inoculation density fed-batch bioreactor, enabled through N-1 perfusion, accommodates clonal diversity and doubles titers. Olin M; Wolnick N; Crittenden H; Quach A; Russell B; Hendrick S; Armstrong J; Webster T; Hadley B; Dickson M; Hodgkins J; Busa K; Connolly R; Downey B Biotechnol Prog; 2024; 40(2):e3410. PubMed ID: 38013663 [TBL] [Abstract][Full Text] [Related]
14. Robust platform for inline Raman monitoring and control of perfusion cell culture. Wan B; Patel M; Zhou G; Olma M; Bieri M; Mueller M; Appiah-Amponsah E; Patel B; Jayapal K Biotechnol Bioeng; 2024 May; 121(5):1688-1701. PubMed ID: 38393313 [TBL] [Abstract][Full Text] [Related]
15. Platform development for high-throughput optimization of perfusion processes-Part II: Variation of perfusion rate strategies in microwell plates. Dorn M; Lucas C; Klottrup-Rees K; Lee K; Micheletti M Biotechnol Bioeng; 2024 Jun; 121(6):1774-1788. PubMed ID: 38433473 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the functionality of a microscale bioreactor system as an industrial process development tool for mammalian perfusion culture. Sewell DJ; Turner R; Field R; Holmes W; Pradhan R; Spencer C; Oliver SG; Slater NK; Dikicioglu D Biotechnol Bioeng; 2019 Jun; 116(6):1315-1325. PubMed ID: 30712286 [TBL] [Abstract][Full Text] [Related]
17. A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Kreye S; Stahn R; Nawrath K; Goralczyk V; Zoro B; Goletz S Biotechnol Prog; 2019 Sep; 35(5):e2832. PubMed ID: 31050211 [TBL] [Abstract][Full Text] [Related]
19. Scale-Down Model Development in ambr systems: An Industrial Perspective. Sandner V; Pybus LP; McCreath G; Glassey J Biotechnol J; 2019 Apr; 14(4):e1700766. PubMed ID: 30350921 [TBL] [Abstract][Full Text] [Related]
20. Use of High-Throughput Automated Microbioreactor System for Production of Model IgG1 in CHO Cells. Velugula-Yellela SR; Kohnhorst C; Powers DN; Trunfio N; Faustino A; Angart P; Berilla E; Faison T; Agarabi C J Vis Exp; 2018 Sep; (139):. PubMed ID: 30320757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]