These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30932596)

  • 1. Picometer-Stable Hexagonal Optical Bench to Verify LISA Phase Extraction Linearity and Precision.
    Schwarze TS; Fernández Barranco G; Penkert D; Kaufer M; Gerberding O; Heinzel G
    Phys Rev Lett; 2019 Mar; 122(8):081104. PubMed ID: 30932596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling characterization and noise studies of the optical metrology system onboard the LISA Pathfinder mission.
    Hechenblaikner G; Gerndt R; Johann U; Luetzow-Wentzky P; Wand V; Audley H; Danzmann K; Garcia-Marin A; Heinzel G; Nofrarias M; Steier F
    Appl Opt; 2010 Oct; 49(29):5665-77. PubMed ID: 20935714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verification of polarising optics for the LISA optical bench.
    Dehne M; Tröbs M; Heinzel G; Danzmann K
    Opt Express; 2012 Dec; 20(25):27273-87. PubMed ID: 23262677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of clock noise transfer and components for space based gravitational wave detectors.
    Sweeney D; Mueller G
    Opt Express; 2012 Nov; 20(23):25603-12. PubMed ID: 23187379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Verification of Laser Heterodyne Interferometric Bench for Chinese Spaceborne Gravitational Wave Detection Missions.
    Xu X; Liu H; Tan Y
    Research (Wash D C); 2024; 7():0302. PubMed ID: 38357699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and performance characterization of a new LISA-like (laser interferometer space antenna-like) gravitational reference sensor and torsion pendulum testbed.
    Apple S; Álvarez AD; Kenyon SP; Chilton A; Klein D; Bickerstaff B; Barke S; Clark M; Letson B; Olatunde T; Sanjuan J; Sauter O; Siu J; Sumner TJ; Mueller G; Wass PJ; Conklin JW
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37222578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential phase-noise properties of a ytterbium-doped fiber amplifier for the Laser Interferometer Space Antenna.
    Tröbs M; Barke S; Theeg T; Kracht D; Heinzel G; Danzmann K
    Opt Lett; 2010 Feb; 35(3):435-7. PubMed ID: 20125746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser ranging and communications for LISA.
    Sutton A; McKenzie K; Ware B; Shaddock DA
    Opt Express; 2010 Sep; 18(20):20759-73. PubMed ID: 20940971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer.
    Hechenblaikner G
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):941-7. PubMed ID: 23695326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced molecular contamination de-risking activity for the Laser Interferometer Space Antenna.
    Bartels N; Vogel M; Riede W; Dahl C; Voss KC; Ciapponi A; Martins R; Mondin L
    Appl Opt; 2023 Sep; 62(26):7091-7103. PubMed ID: 37707051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves.
    Zhao Y; Shen J; Fang C; Liu H; Wang Z; Luo Z
    Opt Express; 2020 Aug; 28(17):25545-25561. PubMed ID: 32907072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on TPD Phasemeter to Suppress Low-Frequency Amplitude Fluctuation and Improve Fast-Acquiring Range for GW Detection.
    Ming M; Zhang J; Duan H; Li Z; Huang X; Tu L; Yeh HC
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the accuracy of actuation electronics for the laser interferometer space antenna.
    Meshksar N; Ferraioli L; Mance D; Ten Pierick J; Giardini D
    Rev Sci Instrum; 2020 Sep; 91(9):095003. PubMed ID: 33003792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Element Dual-Interferometer for Precision Inertial Sensing: Sub-Picometer Structural Stability and Performance as a Reference for Laser Frequency Stabilization.
    Huarcaya V; Dovale Álvarez M; Yamamoto K; Yang Y; Gozzo S; Martínez Cano P; Mehmet M; Esteban Delgado JJ; Jia J; Heinzel G
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and analysis of two-dimensional point-ahead angle mechanism for space gravitational-wave detection.
    Zhu W; Xie Y; Qian Y; Jia J; Zhang L; Wang X
    Rev Sci Instrum; 2024 Feb; 95(2):. PubMed ID: 38350474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evaluation of phasemeter prototype performance for the space gravitational waves detection.
    Liu HS; Dong YH; Li YQ; Luo ZR; Jin G
    Rev Sci Instrum; 2014 Feb; 85(2):024503. PubMed ID: 24593376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna.
    de Vine G; Ware B; McKenzie K; Spero RE; Klipstein WM; Shaddock DA
    Phys Rev Lett; 2010 May; 104(21):211103. PubMed ID: 20867084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telescope jitters and phase noise in the LISA interferometer.
    Sasso CP; Mana G; Mottini S
    Opt Express; 2019 Jun; 27(12):16855-16870. PubMed ID: 31252905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-noise analog frontend design for the Taiji phasemeter prototype.
    Liu HS; Yu T; Luo ZR
    Rev Sci Instrum; 2021 May; 92(5):054501. PubMed ID: 34243339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.
    Bai Y; Li Z; Hu M; Liu L; Qu S; Tan D; Tu H; Wu S; Yin H; Li H; Zhou Z
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.