These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30932823)

  • 41. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans.
    Aubry JF; Tanter M; Pernot M; Thomas JL; Fink M
    J Acoust Soc Am; 2003 Jan; 113(1):84-93. PubMed ID: 12558249
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.
    Deng L; O'Reilly MA; Jones RM; An R; Hynynen K
    Phys Med Biol; 2016 Dec; 61(24):8476-8501. PubMed ID: 27845920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrasound Axicon: Systematic Approach to Optimize Focusing Resolution through Human Skull Bone.
    Acquaticci F; Lew SE; Gwirc SN
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31635195
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low-profile lenses for ultrasound surgery.
    Fjield T; Silcox CE; Hynynen K
    Phys Med Biol; 1999 Jul; 44(7):1803-13. PubMed ID: 10442714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull.
    Hynynen K; Jolesz FA
    Ultrasound Med Biol; 1998 Feb; 24(2):275-83. PubMed ID: 9550186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dual-mode hemispherical sparse array for 3D passive acoustic mapping and skull localization within a clinical MRI guided focused ultrasound device.
    Crake C; Brinker ST; Coviello CM; Livingstone MS; McDannold NJ
    Phys Med Biol; 2018 Mar; 63(6):065008. PubMed ID: 29459494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Sound-field modification with acoustic lenses for high-intensity focused ultrasound therapy].
    Divkovic GW; Hauser S; Huber P; Jenne J
    Z Med Phys; 2006; 16(2):125-32. PubMed ID: 16875025
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catheter Hydrophone Aberration Correction for Transcranial Histotripsy Treatment of Intracerebral Hemorrhage: Proof-of-Concept.
    Gerhardson T; Sukovich JR; Pandey AS; Hall TL; Cain CA; Xu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1684-1697. PubMed ID: 28880166
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adaptive focusing for transcranial ultrasound imaging using dual arrays.
    Vignon F; Aubry JF; Tanter M; Margoum A; Fink M
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2737-45. PubMed ID: 17139734
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deep Neural Network for Navigation of a Single-Element Transducer During Transcranial Focused Ultrasound Therapy: Proof of Concept.
    Choi M; Jang M; Yoo SS; Noh G; Yoon K
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5653-5664. PubMed ID: 35969551
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational modeling of a single-element transcranial focused ultrasound transducer for subthalamic nucleus stimulation.
    Samoudi MA; Van Renterghem T; Botteldooren D
    J Neural Eng; 2019 Apr; 16(2):026015. PubMed ID: 30572313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Focusing of therapeutic ultrasound through a human skull: a numerical study.
    Sun J; Hynynen K
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1705-15. PubMed ID: 9745750
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcranial ultrasound simulations: A review.
    Angla C; Larrat B; Gennisson JL; Chatillon S
    Med Phys; 2023 Feb; 50(2):1051-1072. PubMed ID: 36047387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasound therapy transducers with space-filling non-periodic arrays.
    Raju BI; Hall CS; Seip R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):944-54. PubMed ID: 21622050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and experimental verification of thin acoustic lenses for the coagulation of large tissue volumes.
    Fjield T; Sorrentino V; Cline H; Hynynen K
    Phys Med Biol; 1997 Dec; 42(12):2341-54. PubMed ID: 9434292
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of Transcranial Focused Ultrasound and Transcranial Pulse Stimulation for Neuromodulation: A Computational Study.
    Truong DQ; Thomas C; Hampstead BM; Datta A
    Neuromodulation; 2022 Jun; 25(4):606-613. PubMed ID: 35125300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The application of sparse arrays in high frequency transcranial focused ultrasound therapy: a simulation study.
    Pajek D; Hynynen K
    Med Phys; 2013 Dec; 40(12):122901. PubMed ID: 24320540
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel numerical approach to stimulation of a specific brain region using transcranial focused ultrasound.
    Park TY; Pahk KJ; Kim H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3697-3700. PubMed ID: 30441175
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design of a Versatile Angle-Rotatable Skull-Shaped Conformal Transcranial Focused Ultrasound Transducer for Noninvasive Brain Therapy.
    Wu N; Shen G; Qu X; Wu H; Qiao S; Wang E; Chen Y; Wang H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jan; 68(1):116-126. PubMed ID: 32396086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.