These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30932843)

  • 1. Statistical Analysis of Received Signal and Error Performance for Mobile Molecular Communication.
    Huang S; Lin L; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):415-427. PubMed ID: 30932843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutual Information and Maximum Achievable Rate for Mobile Molecular Communication Systems.
    Lin L; Wu Q; Liu F; Yan H
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):507-517. PubMed ID: 30235143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Transmitted Molecules and Decision Threshold for Drift-Induced Diffusive Molecular Channel With Mobile Nanomachines.
    Chouhan L; Sharma PK; Varshney N
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):651-660. PubMed ID: 31425042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Non-Coherent Signal Detection Techniques for Mobile Molecular Communication.
    Yu W; Liu F; Yan H; Lin L
    IEEE Trans Nanobioscience; 2023 Apr; 22(2):356-364. PubMed ID: 35877803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial Distance Estimation and Signal Detection for Diffusive Mobile Molecular Communication.
    Huang S; Lin L; Guo W; Yan H; Xu J; Liu F
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):422-433. PubMed ID: 32275604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.
    Chang G; Lin L; Yan H
    IEEE Trans Nanobioscience; 2018 Mar; 17(1):21-35. PubMed ID: 29570072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Complexity Adaptive Signal Detection for Mobile Molecular Communication.
    Mu X; Yan H; Li B; Liu M; Zheng R; Li Y; Lin L
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):237-248. PubMed ID: 31944963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achievable Strength-Based Signal Detection in Quantity-Constrained PAM OOK Concentration-Encoded Molecular Communication.
    Mahfuz MU
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):619-626. PubMed ID: 27834649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Complexity Noncoherent Signal Detection for Nanoscale Molecular Communications.
    Li B; Sun M; Wang S; Guo W; Zhao C
    IEEE Trans Nanobioscience; 2016 Jan; 15(1):3-10. PubMed ID: 26685259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Reactive Receiver Modeling for Diffusive Molecular Communication Systems: Reversible Binding, Molecule Degradation, and Finite Number of Receptors.
    Ahmadzadeh A; Arjmandi H; Burkovski A; Schober R
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):713-727. PubMed ID: 27654883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Enhancement of Diffusion-Based Molecular Communication.
    Dambri OA; Cherkaoui S
    IEEE Trans Nanobioscience; 2020 Jan; 19(1):48-58. PubMed ID: 31647441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Asymmetric-Distance Metrics for Decoding of Convolutional Codes in Diffusion-Based Molecular Communications.
    Li Q
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):469-481. PubMed ID: 31071051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dMole: A Novel Transreceiver for Mobile Molecular Communication Using Robust Differential Detection Techniques.
    Shrivastava AK; Das D; Mahapatra R; Mohanty SP
    IEEE Trans Nanobioscience; 2020 Oct; 19(4):609-621. PubMed ID: 32763857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Electrical Model for Advection-Diffusion-Based Molecular Communication in Nanonetworks.
    Azadi M; Abouei J
    IEEE Trans Nanobioscience; 2016 Apr; 15(3):246-57. PubMed ID: 27046879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clock Synchronization for Mobile Molecular Communication Systems.
    Huang L; Lin L; Liu F; Yan H
    IEEE Trans Nanobioscience; 2021 Oct; 20(4):406-415. PubMed ID: 33259305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Modulation for Molecular Communication.
    Huang Y; Wen M; Yang LL; Chae CB; Ji F
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):381-395. PubMed ID: 30892218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication.
    Mahfuz MU; Makrakis D; Mouftah HT
    IEEE Trans Nanobioscience; 2014 Sep; 13(3):208-22. PubMed ID: 25163066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation Study and Analysis of Diffusive Molecular Communications With an Apertured Plane.
    Gursoy MC; Yilmaz HB; Pusane AE; Tugcu T
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):468-476. PubMed ID: 32287002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless Body Area Nanonetworks via Vascular Molecular Communication.
    Kianfar G; Azadi M; Abouei J; Mohammadi A; Plataniotis KN
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):355-367. PubMed ID: 38349839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-MoSK Modulation in Molecular Communications.
    Kabir MH; Islam SM; Kwak KS
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):680-3. PubMed ID: 26335557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.