These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30932844)

  • 1. CaverDock: A Novel Method for the Fast Analysis of Ligand Transport.
    Filipovic J; Vavra O; Plhak J; Bednar D; Marques SM; Brezovsky J; Matyska L; Damborsky J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1625-1638. PubMed ID: 30932844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels.
    Vavra O; Filipovic J; Plhak J; Bednar D; Marques SM; Brezovsky J; Stourac J; Matyska L; Damborsky J
    Bioinformatics; 2019 Dec; 35(23):4986-4993. PubMed ID: 31077297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Ligand Transport in Receptors Using CaverDock.
    Hozzová J; Vávra O; Bednář D; Filipovič J
    Methods Mol Biol; 2021; 2266():105-124. PubMed ID: 33759123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast Screening of Inhibitor Binding/Unbinding Using Novel Software Tool CaverDock.
    Pinto GP; Vavra O; Filipovic J; Stourac J; Bednar D; Damborsky J
    Front Chem; 2019; 7():709. PubMed ID: 31737596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pyCaverDock: Python implementation of the popular tool for analysis of ligand transport with advanced caching and batch calculation support.
    Vavra O; Beranek J; Stourac J; Surkovsky M; Filipovic J; Damborsky J; Martinovic J; Bednar D
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37471591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport.
    Stourac J; Vavra O; Kokkonen P; Filipovic J; Pinto G; Brezovsky J; Damborsky J; Bednar D
    Nucleic Acids Res; 2019 Jul; 47(W1):W414-W422. PubMed ID: 31114897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRITON: a graphical tool for ligand-binding protein engineering.
    Prokop M; Adam J; Kríz Z; Wimmerová M; Koca J
    Bioinformatics; 2008 Sep; 24(17):1955-6. PubMed ID: 18603567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
    Ng MC; Fong S; Siu SW
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541007. PubMed ID: 25800162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully automated virtual screening pipeline of FDA-approved drugs using Caver Web.
    Musil M; Jezik A; Jankujova M; Stourac J; Galgonek J; Mustafa Eyrilmez S; Vondrasek J; Damborsky J; Bednar D
    Comput Struct Biotechnol J; 2022; 20():6512-6518. PubMed ID: 36467577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark.
    Gaillard T
    J Chem Inf Model; 2018 Aug; 58(8):1697-1706. PubMed ID: 29989806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework.
    López-Camacho E; García Godoy MJ; Nebro AJ; Aldana-Montes JF
    Bioinformatics; 2014 Feb; 30(3):437-8. PubMed ID: 24273242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration.
    Hassan NM; Alhossary AA; Mu Y; Kwoh CK
    Sci Rep; 2017 Nov; 7(1):15451. PubMed ID: 29133831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Docking Simulations with ArgusLab.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():203-220. PubMed ID: 31452107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-Receptor Interactions and Drug Design.
    Syriopoulou A; Markopoulos I; Tzakos AG; Mavromoustakos T
    Methods Mol Biol; 2021; 2266():89-104. PubMed ID: 33759122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RDPSOVina: the random drift particle swarm optimization for protein-ligand docking.
    Li J; Li C; Sun J; Palade V
    J Comput Aided Mol Des; 2022 Jun; 36(6):415-425. PubMed ID: 35532815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies.
    Vavra O; Damborsky J; Bednar D
    Biotechnol Adv; 2022 Nov; 60():108009. PubMed ID: 35738509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening.
    Mohammad T; Mathur Y; Hassan MI
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33105480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting Docking-Based Virtual Screening with Deep Learning.
    Pereira JC; Caffarena ER; Dos Santos CN
    J Chem Inf Model; 2016 Dec; 56(12):2495-2506. PubMed ID: 28024405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.