These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30932847)

  • 1. Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype.
    Yan Y; Kappel D; Neumarker F; Partzsch J; Vogginger B; Hoppner S; Furber S; Maass W; Legenstein R; Mayr C
    IEEE Trans Biomed Circuits Syst; 2019 Jun; 13(3):579-591. PubMed ID: 30932847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System.
    Mikaitis M; Pineda García G; Knight JC; Furber SB
    Front Neurosci; 2018; 12():105. PubMed ID: 29535600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study toward modeling sleep and wakefulness.
    Bhattacharya BS; Patterson C; Galluppi F; Durrant SJ; Furber S
    Front Neural Circuits; 2014; 8():46. PubMed ID: 24904294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Memory-Efficient Deep Learning on a SpiNNaker 2 Prototype.
    Liu C; Bellec G; Vogginger B; Kappel D; Partzsch J; Neumärker F; Höppner S; Maass W; Furber SB; Legenstein R; Mayr CG
    Front Neurosci; 2018; 12():840. PubMed ID: 30505263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware.
    Rostami A; Vogginger B; Yan Y; Mayr CG
    Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework for plasticity implementation on the SpiNNaker neural architecture.
    Galluppi F; Lagorce X; Stromatias E; Pfeiffer M; Plana LA; Furber SB; Benosman RB
    Front Neurosci; 2014; 8():429. PubMed ID: 25653580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Learning in Bio-plausible Memristive Networks.
    Deng L; Li G; Deng N; Wang D; Zhang Z; He W; Li H; Pei J; Shi L
    Sci Rep; 2015 Jun; 5():10684. PubMed ID: 26090862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural plasticity on an accelerated analog neuromorphic hardware system.
    Billaudelle S; Cramer B; Petrovici MA; Schreiber K; Kappel D; Schemmel J; Meier K
    Neural Netw; 2021 Jan; 133():11-20. PubMed ID: 33091719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy efficient synaptic plasticity.
    Li HL; van Rossum MC
    Elife; 2020 Feb; 9():. PubMed ID: 32053106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpiNNTools: The Execution Engine for the SpiNNaker Platform.
    Rowley AGD; Brenninkmeijer C; Davidson S; Fellows D; Gait A; Lester DR; Plana LA; Rhodes O; Stokes AB; Furber SB
    Front Neurosci; 2019; 13():231. PubMed ID: 30971873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity.
    Pedretti G; Milo V; Ambrogio S; Carboni R; Bianchi S; Calderoni A; Ramaswamy N; Spinelli AS; Ielmini D
    Sci Rep; 2017 Jul; 7(1):5288. PubMed ID: 28706303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Overview of Machine Learning within Embedded and Mobile Devices-Optimizations and Applications.
    Ajani TS; Imoize AL; Atayero AA
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34203119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.