These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 30933148)

  • 21. Polarization squeezing at the audio frequency band for the Rubidium D
    Wen X; Han Y; Liu J; He J; Wang J
    Opt Express; 2017 Aug; 25(17):20737-20748. PubMed ID: 29041752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection and perfect fitting of 13.2  dB squeezed vacuum states by considering green-light-induced infrared absorption.
    Shi S; Wang Y; Yang W; Zheng Y; Peng K
    Opt Lett; 2018 Nov; 43(21):5411-5414. PubMed ID: 30383020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor.
    Corzo N; Marino AM; Jones KM; Lett PD
    Opt Express; 2011 Oct; 19(22):21358-69. PubMed ID: 22108986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity.
    Zhang J; Ye C; Gao F; Xiao M
    Phys Rev Lett; 2008 Dec; 101(23):233602. PubMed ID: 19113551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise.
    Gu WJ; Wang YY; Yi Z; Yang WX; Sun LH
    Opt Express; 2020 Apr; 28(8):12460-12474. PubMed ID: 32403743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Squeezed vacuum phase control at 2  μm.
    Yap MJ; Gould DW; McRae TG; Altin PA; Kijbunchoo N; Mansell GL; Ward RL; Shaddock DA; Slagmolen BJJ; McClelland DE
    Opt Lett; 2019 Nov; 44(21):5386-5389. PubMed ID: 31675014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides.
    Anderson ME; Beck M; Raymer MG; Bierlein JD
    Opt Lett; 1995 Mar; 20(6):620-2. PubMed ID: 19859275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bright squeezed-vacuum source with 1.1 spatial mode.
    Pérez AM; Iskhakov TSh; Sharapova P; Lemieux S; Tikhonova OV; Chekhova MV; Leuchs G
    Opt Lett; 2014 Apr; 39(8):2403-6. PubMed ID: 24979004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermally controlled optical resonator for vacuum squeezed states separation.
    Nguyen C; Bréelle E; Barsuglia M; Capocasa E; De Laurentis M; Sequino V; Sorrentino F
    Appl Opt; 2022 Jun; 61(17):5226-5236. PubMed ID: 36256205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broadband squeezing of light by pulse excitation.
    Hirano T; Matsuoka M
    Opt Lett; 1990 Oct; 15(20):1153-5. PubMed ID: 19771026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frequency-Dependent Squeezing for Advanced LIGO.
    McCuller L; Whittle C; Ganapathy D; Komori K; Tse M; Fernandez-Galiana A; Barsotti L; Fritschel P; MacInnis M; Matichard F; Mason K; Mavalvala N; Mittleman R; Yu H; Zucker ME; Evans M
    Phys Rev Lett; 2020 May; 124(17):171102. PubMed ID: 32412252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of imperfect homodyne visibility on multi-spatial-mode two-mode squeezing measurements.
    Gupta P; Speirs RW; Jones KM; Lett PD
    Opt Express; 2020 Jan; 28(1):652-664. PubMed ID: 32118988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum squeezing generation versus photon localization in a disordered planar microcavity.
    Bamba M; Pigeon S; Ciuti C
    Phys Rev Lett; 2010 May; 104(21):213604. PubMed ID: 20867098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and evasion of backscattered light in the squeezed-light enhanced gravitational wave interferometer GEO 600.
    Bergamin F; Lough J; Schreiber E; Grote H; Mehmet M; Vahlbruch H; Affeldt C; Andric T; Bisht A; Brinkmann M; Kringel V; Lück H; Mukund N; Nadji S; Sorazu B; Strain K; Weinert M; Danzmann K
    Opt Express; 2023 Nov; 31(23):38443-38456. PubMed ID: 38017951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong vacuum squeezing from bichromatically driven Kerrlike cavities: from optomechanics to superconducting circuits.
    Garcés R; de Valcárcel GJ
    Sci Rep; 2016 Feb; 6():21964. PubMed ID: 26916946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beating the 3 dB Limit for Intracavity Squeezing and Its Application to Nondemolition Qubit Readout.
    Qin W; Miranowicz A; Nori F
    Phys Rev Lett; 2022 Sep; 129(12):123602. PubMed ID: 36179165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of squeezed light from one atom excited with two photons.
    Ourjoumtsev A; Kubanek A; Koch M; Sames C; Pinkse PW; Rempe G; Murr K
    Nature; 2011 Jun; 474(7353):623-6. PubMed ID: 21720367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor.
    Mikhailov EE; Novikova I
    Opt Lett; 2008 Jun; 33(11):1213-5. PubMed ID: 18516177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of Stokes-operator squeezing for continuous-variable orbital angular momentum.
    Guo J; Cai C; Ma L; Liu K; Sun H; Gao J
    Sci Rep; 2017 Jun; 7(1):4434. PubMed ID: 28667303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generating quadrature squeezing in an atom laser through self-interaction.
    Johnsson MT; Haine SA
    Phys Rev Lett; 2007 Jul; 99(1):010401. PubMed ID: 17678140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.