These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30933432)

  • 1. A Bubble-Dragged Catalytic Polymer Microrocket.
    Si T; Zou X; Wu Z; Li T; Wang X; Ivanovich KI; He Q
    Chem Asian J; 2019 Jul; 14(14):2460-2464. PubMed ID: 30933432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble-Pair Propelled Colloidal Kayaker.
    Wu Y; Si T; Gao C; Yang M; He Q
    J Am Chem Soc; 2018 Sep; 140(38):11902-11905. PubMed ID: 30176727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc Microrocket Pills: Fabrication and Characterization toward Active Oral Delivery.
    Mundaca-Uribe R; Esteban-Fernández de Ávila B; Holay M; Lekshmy Venugopalan P; Nguyen B; Zhou J; Abbas A; Fang RH; Zhang L; Wang J
    Adv Healthc Mater; 2020 Sep; 9(18):e2000900. PubMed ID: 32743976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internally/Externally Bubble-Propelled Photocatalytic Tubular Nanomotors for Efficient Water Cleaning.
    Wang S; Jiang Z; Ouyang S; Dai Z; Wang T
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23974-23982. PubMed ID: 28650608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing Iron's Attractive Chemical and Magnetic Properties in Microrocket Design, Extended Motion, and Unique Performance.
    Karshalev E; Chen C; Marolt G; Martín A; Campos I; Castillo R; Wu T; Wang J
    Small; 2017 Jun; 13(21):. PubMed ID: 28394480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality.
    Liu T; Xie L; Zeng J; Yan M; Qiu B; Wang X; Zhou S; Zhang X; Zeng H; Liang Q; He Y; Liang K; Liu J; Velliou E; Jiang L; Kong B
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15517-15528. PubMed ID: 35323010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.
    Wang S; Wu N
    Langmuir; 2014 Apr; 30(12):3477-86. PubMed ID: 24593832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuously Variable Regulation of the Speed of Bubble-Propelled Janus Microcapsule Motors Based on Salt-Responsive Polyelectrolyte Brushes.
    Ji Y; Lin X; Wang D; Zhou C; Wu Y; He Q
    Chem Asian J; 2019 Jul; 14(14):2450-2455. PubMed ID: 30556963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template Electrosynthesis of High-Performance Graphene Microengines.
    Martín A; Jurado-Sánchez B; Escarpa A; Wang J
    Small; 2015 Aug; 11(29):3568-74. PubMed ID: 25809009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium atomistic molecular dynamics simulation of tubular nanomotor propelled by bubble propulsion.
    Man VH; Li MS; Wang J; Derreumaux P; Nguyen PH
    J Chem Phys; 2019 Jul; 151(2):024103. PubMed ID: 31301696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors.
    Teo WZ; Wang H; Pumera M
    Chem Commun (Camb); 2016 Mar; 52(23):4333-6. PubMed ID: 26923278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions.
    Ma X; Hortelao AC; Miguel-López A; Sánchez S
    J Am Chem Soc; 2016 Oct; 138(42):13782-13785. PubMed ID: 27718566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Polymer Multilayer Shell Motors for Separation of Organics.
    Lin Z; Wu Z; Lin X; He Q
    Chemistry; 2016 Jan; 22(5):1587-91. PubMed ID: 26632275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion.
    Wang H; Moo JG; Pumera M
    ACS Nano; 2016 May; 10(5):5041-50. PubMed ID: 27135613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated wave-effects model for an underwater explosion bubble.
    Geers TL; Hunter KS
    J Acoust Soc Am; 2002 Apr; 111(4):1584-601. PubMed ID: 12002843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-modulated bubble propulsion of chemically powered microengines.
    Xu T; Soto F; Gao W; Garcia-Gradilla V; Li J; Zhang X; Wang J
    J Am Chem Soc; 2014 Jun; 136(24):8552-5. PubMed ID: 24898345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuel concentration dependent movement of supramolecular catalytic nanomotors.
    Wilson DA; de Nijs B; van Blaaderen A; Nolte RJ; van Hest JC
    Nanoscale; 2013 Feb; 5(4):1315-8. PubMed ID: 23223943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.
    Li L; Wang J; Li T; Song W; Zhang G
    Soft Matter; 2014 Oct; 10(38):7511-8. PubMed ID: 25080889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.