These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30933507)

  • 1. A Systematic Cheminformatics Analysis of Functional Groups Occurring in Natural Products.
    Ertl P; Schuhmann T
    J Nat Prod; 2019 May; 82(5):1258-1263. PubMed ID: 30933507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituents of life: The most common substituent patterns present in natural products.
    Ertl P
    Bioorg Med Chem; 2022 Jan; 54():116562. PubMed ID: 34923390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cheminformatics analysis of natural products: lessons from nature inspiring the design of new drugs.
    Ertl P; Schuffenhauer A
    Prog Drug Res; 2008; 66():217, 219-35. PubMed ID: 18416307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cheminformatics Explorations of Natural Products.
    Prieto-Martínez FD; Norinder U; Medina-Franco JL
    Prog Chem Org Nat Prod; 2019; 110():1-35. PubMed ID: 31621009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cheminformatics Analysis of Natural Product Scaffolds: Comparison of Scaffolds Produced by Animals, Plants, Fungi and Bacteria.
    Ertl P; Schuhmann T
    Mol Inform; 2020 Nov; 39(11):e2000017. PubMed ID: 32203642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries.
    Lee ML; Schneider G
    J Comb Chem; 2001; 3(3):284-9. PubMed ID: 11350252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural product-likeness score and its application for prioritization of compound libraries.
    Ertl P; Roggo S; Schuffenhauer A
    J Chem Inf Model; 2008 Jan; 48(1):68-74. PubMed ID: 18034468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cheminformatic Analysis of Natural Product Fragments.
    Reker D
    Prog Chem Org Nat Prod; 2019; 110():143-175. PubMed ID: 31621013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. A cheminformatics "proof-of-concept" study.
    Moshawih S; Hadikhani P; Fatima A; Goh HP; Kifli N; Kotra V; Goh KW; Ming LC
    J Mol Graph Model; 2022 Dec; 117():108307. PubMed ID: 36096064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural products and combinatorial chemistry: back to the future.
    Ortholand JY; Ganesan A
    Curr Opin Chem Biol; 2004 Jun; 8(3):271-80. PubMed ID: 15183325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of compound libraries based on natural product scaffolds and protein structure similarity clustering (PSSC).
    Balamurugan R; Dekker FJ; Waldmann H
    Mol Biosyst; 2005 May; 1(1):36-45. PubMed ID: 16880961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of natural product inspired compound collections.
    Kumar K; Waldmann H
    Angew Chem Int Ed Engl; 2009; 48(18):3224-42. PubMed ID: 19267376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of natural product-inspired diversity-oriented synthesis to drug discovery.
    Marcaurelle LA; Johannes CW
    Prog Drug Res; 2008; 66():187, 189-216. PubMed ID: 18416306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Evolution of Natural Product Structure.
    Grigalunas M; Brakmann S; Waldmann H
    J Am Chem Soc; 2022 Mar; 144(8):3314-3329. PubMed ID: 35188375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Stereoselective Synthesis of a Compound Collection Based on the Bicyclic Scaffolds of Natural Products.
    Annamalai M; Hristeva S; Bielska M; Ortega R; Kumar K
    Molecules; 2017 May; 22(5):. PubMed ID: 28524077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principle and design of pseudo-natural products.
    Karageorgis G; Foley DJ; Laraia L; Waldmann H
    Nat Chem; 2020 Mar; 12(3):227-235. PubMed ID: 32015480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries.
    Cordier C; Morton D; Murrison S; Nelson A; O'Leary-Steele C
    Nat Prod Rep; 2008 Aug; 25(4):719-37. PubMed ID: 18663392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Novel Drug-like Molecules Using Informatics Rich Secondary Metabolites Analysis of Indian Medicinal and Aromatic Plants.
    Karade D; Vijayasarathi D; Kadoo N; Vyas R; Ingle PK; Karthikeyan M
    Comb Chem High Throughput Screen; 2020; 23(10):1113-1131. PubMed ID: 32504496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fragment Library of Natural Products and its Comparative Chemoinformatic Characterization.
    Chávez-Hernández AL; Sánchez-Cruz N; Medina-Franco JL
    Mol Inform; 2020 Nov; 39(11):e2000050. PubMed ID: 32302465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles, implementation, and application of biology-oriented synthesis (BIOS).
    Wilk W; Zimmermann TJ; Kaiser M; Waldmann H
    Biol Chem; 2010 May; 391(5):491-7. PubMed ID: 20030592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.