BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30933692)

  • 1. Neural mechanisms of internal distraction suppression in visual attention.
    Rajan A; Meyyappan S; Walker H; Henry Samuel IB; Hu Z; Ding M
    Cortex; 2019 Aug; 117():77-88. PubMed ID: 30933692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Working memory capacity and the antisaccade task: A microanalytic-macroanalytic investigation of individual differences in goal activation and maintenance.
    Meier ME; Smeekens BA; Silvia PJ; Kwapil TR; Kane MJ
    J Exp Psychol Learn Mem Cogn; 2018 Jan; 44(1):68-84. PubMed ID: 28639800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual differences in working memory capacity and distractor processing: possible contribution of top-down inhibitory control.
    Minamoto T; Osaka M; Osaka N
    Brain Res; 2010 Jun; 1335():63-73. PubMed ID: 20381462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Working memory capacity does not always support future-oriented mind-wandering.
    McVay JC; Unsworth N; McMillan BD; Kane MJ
    Can J Exp Psychol; 2013 Mar; 67(1):41-50. PubMed ID: 23458550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interplay of top-down attention with affective codes during visual short-term memory maintenance.
    Kuo BC; Lin SH; Yeh YY
    Cortex; 2018 Jun; 103():55-70. PubMed ID: 29554542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of time on task on mind wandering and visual working memory.
    Krimsky M; Forster DE; Llabre MM; Jha AP
    Cognition; 2017 Dec; 169():84-90. PubMed ID: 28865286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociable mechanisms underlying individual differences in visual working memory capacity.
    Gulbinaite R; Johnson A; de Jong R; Morey CC; van Rijn H
    Neuroimage; 2014 Oct; 99():197-206. PubMed ID: 24878830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain Activity and Network Interactions Linked to Valence-Related Differences in the Impact of Emotional Distraction.
    Iordan AD; Dolcos F
    Cereb Cortex; 2017 Jan; 27(1):731-749. PubMed ID: 26543041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-Specific Neural Representations of Generalizable Metacognitive Control Signals in the Human Dorsal Anterior Cingulate Cortex.
    Su J; Jia W; Wan X
    J Neurosci; 2022 Feb; 42(7):1275-1291. PubMed ID: 34907025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive and contextual correlates of spontaneous and deliberate mind-wandering.
    Robison MK; Unsworth N
    J Exp Psychol Learn Mem Cogn; 2018 Jan; 44(1):85-98. PubMed ID: 28758776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy.
    Kane MJ; Meier ME; Smeekens BA; Gross GM; Chun CA; Silvia PJ; Kwapil TR
    J Exp Psychol Gen; 2016 Aug; 145(8):1017-1048. PubMed ID: 27454042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drifting from slow to "D'oh!": working memory capacity and mind wandering predict extreme reaction times and executive control errors.
    McVay JC; Kane MJ
    J Exp Psychol Learn Mem Cogn; 2012 May; 38(3):525-549. PubMed ID: 22004270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of mind-wandering and visual distraction on age-related changes in neuro-electric brain activity and variability.
    Maillet D; Yu L; Lau B; Chow R; Alain C; Grady CL
    Neuropsychologia; 2020 Sep; 146():107565. PubMed ID: 32707165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carving executive control at its joints: Working memory capacity predicts stimulus-stimulus, but not stimulus-response, conflict.
    Meier ME; Kane MJ
    J Exp Psychol Learn Mem Cogn; 2015 Nov; 41(6):1849-72. PubMed ID: 26120774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain systems underlying attentional control and emotional distraction during working memory encoding.
    Ziaei M; Peira N; Persson J
    Neuroimage; 2014 Feb; 87():276-86. PubMed ID: 24185015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the neural basis of focused and divided attention.
    Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive knowledge of stimulus relevance does not influence top-down suppression of irrelevant information in older adults.
    Zanto TP; Hennigan K; Ostberg M; Clapp WC; Gazzaley A
    Cortex; 2010 Apr; 46(4):564-74. PubMed ID: 19744649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task manipulation effects on the relationship between working memory and go/no-go task performance.
    Wiemers EA; Redick TS
    Conscious Cogn; 2019 May; 71():39-58. PubMed ID: 30928898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shared and distinct structure-function substrates of heterogenous distractor suppression ability between high and low working memory capacity individuals.
    Xie K; Jin Z; Jin DG; Zhang J; Li L
    Neuroimage; 2022 Oct; 260():119483. PubMed ID: 35842098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.