BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30933901)

  • 1. Development of a closed-loop process for fusel alcohol production and nutrient recycling from microalgae biomass.
    Liu F; Lane P; Hewson JC; Stavila V; Tran-Gyamfi MB; Hamel M; Lane TW; Davis RW
    Bioresour Technol; 2019 Jul; 283():350-357. PubMed ID: 30933901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source.
    Davis RW; Siccardi AJ; Huysman ND; Wyatt NB; Hewson JC; Lane TW
    Bioresour Technol; 2015 Dec; 198():577-85. PubMed ID: 26433155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient recycle from defatted microalgae (Aurantiochytrium) with hydrothermal treatment for microalgae cultivation.
    Aida TM; Maruta R; Tanabe Y; Oshima M; Nonaka T; Kujiraoka H; Kumagai Y; Ota M; Suzuki I; Watanabe MM; Inomata H; Smith RL
    Bioresour Technol; 2017 Mar; 228():186-192. PubMed ID: 28063361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food waste as nutrient source in heterotrophic microalgae cultivation.
    Pleissner D; Lam WC; Sun Z; Lin CS
    Bioresour Technol; 2013 Jun; 137():139-46. PubMed ID: 23587816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microalgal and cyanobacterial cultivation: the supply of nutrients.
    Markou G; Vandamme D; Muylaert K
    Water Res; 2014 Nov; 65():186-202. PubMed ID: 25113948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.
    Racharaks R; Ge X; Li Y
    Bioresour Technol; 2015 Sep; 191():146-56. PubMed ID: 25989090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass.
    Lowrey J; Armenta RE; Brooks MS
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1105-15. PubMed ID: 27155854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture.
    Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW
    Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of microalgae under different physiological phases to struvite as a buffering nutrient source for biomass and lipid production.
    Tang C; Dai D; Li S; Qv M; Liu D; Li Z; Huang LZ; Zhu L
    Bioresour Technol; 2023 Sep; 384():129352. PubMed ID: 37336459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of centrate for the outdoor production of marine microalgae at pilot-scale in flat-panel photobioreactors.
    Romero-Villegas GI; Fiamengo M; Acién Fernández FG; Molina Grima E
    J Biotechnol; 2018 Oct; 284():102-114. PubMed ID: 30142413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient and media recycling in heterotrophic microalgae cultures.
    Lowrey J; Armenta RE; Brooks MS
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1061-1075. PubMed ID: 26572520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Materials flow modeling of nutrient recycling in biodiesel production from microalgae.
    Rösch C; Skarka J; Wegerer N
    Bioresour Technol; 2012 Mar; 107():191-9. PubMed ID: 22212693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation of Scenedesmus obliquus in liquid hydrolysate from flash hydrolysis for nutrient recycling.
    Barbera E; Sforza E; Kumar S; Morosinotto T; Bertucco A
    Bioresour Technol; 2016 May; 207():59-66. PubMed ID: 26868157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process.
    Leng L; Li J; Wen Z; Zhou W
    Bioresour Technol; 2018 May; 256():529-542. PubMed ID: 29459104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Nitrogen and Phosphorus on Microalgal Growth, Biomass, Lipid, and Fatty Acid Production: An Overview.
    Yaakob MA; Mohamed RMSR; Al-Gheethi A; Aswathnarayana Gokare R; Ambati RR
    Cells; 2021 Feb; 10(2):. PubMed ID: 33673015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor.
    Kang NK; Kim EK; Sung MG; Kim YU; Jeong BR; Chang YK
    Biotechnol Bioeng; 2019 Mar; 116(3):555-568. PubMed ID: 30536876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology.
    Wang X; Bao K; Cao W; Zhao Y; Hu CW
    Sci Rep; 2017 Jul; 7(1):5426. PubMed ID: 28710391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.
    Pavón-Suriano SG; Ortega-Clemente LA; Curiel-Ramírez S; Jiménez-García MI; Pérez-Legaspi IA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21332-21340. PubMed ID: 28741207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.
    Bohutskyi P; Chow S; Ketter B; Fung Shek C; Yacar D; Tang Y; Zivojnovich M; Betenbaugh MJ; Bouwer EJ
    Bioresour Technol; 2016 Dec; 222():294-308. PubMed ID: 27728832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors.
    Romero-Villegas GI; Fiamengo M; Acién-Fernández FG; Molina-Grima E
    J Environ Manage; 2018 Dec; 228():506-516. PubMed ID: 30273769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.