These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 30933941)

  • 1. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function.
    Dang HP; Shabab T; Shafiee A; Peiffer QC; Fox K; Tran N; Dargaville TR; Hutmacher DW; Tran PA
    Biofabrication; 2019 Apr; 11(3):035014. PubMed ID: 30933941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed Polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics.
    Visscher LE; Dang HP; Knackstedt MA; Hutmacher DW; Tran PA
    Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():78-89. PubMed ID: 29549952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth.
    Obayemi JD; Jusu SM; Salifu AA; Ghahremani S; Tadesse M; Uzonwanne VO; Soboyejo WO
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110794. PubMed ID: 32409024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering.
    Farzin A; Etesami SA; Goodarzi A; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110032. PubMed ID: 31546347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres.
    Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L
    Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.
    Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.
    He J; Xia P; Li D
    Biofabrication; 2016 Aug; 8(3):035008. PubMed ID: 27490377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair.
    Bai J; Wang H; Gao W; Liang F; Wang Z; Zhou Y; Lan X; Chen X; Cai N; Huang W; Tang Y
    Int J Pharm; 2020 Feb; 576():118941. PubMed ID: 31881261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery.
    Dorj B; Won JE; Purevdorj O; Patel KD; Kim JH; Lee EJ; Kim HW
    Acta Biomater; 2014 Mar; 10(3):1238-50. PubMed ID: 24239677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects.
    Wang C; Ye X; Zhao Y; Bai L; He Z; Tong Q; Xie X; Zhu H; Cai D; Zhou Y; Lu B; Wei Y; Mei L; Xie D; Wang M
    Biofabrication; 2020 Apr; 12(3):035004. PubMed ID: 31952065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering.
    Gupta D; Singh AK; Dravid A; Bellare J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E-Jet 3D-Printed Scaffolds as Sustained Multi-Drug Delivery Vehicles in Breast Cancer Therapy.
    Qiao X; Yang Y; Huang R; Shi X; Chen H; Wang J; Chen Y; Tan Y; Tan Z
    Pharm Res; 2019 Nov; 36(12):182. PubMed ID: 31741089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically-driven drug and cell on demand release system using 3D printed alginate based hollow fiber scaffolds.
    Wang Z; Liu C; Chen B; Luo Y
    Int J Biol Macromol; 2021 Jan; 168():38-45. PubMed ID: 33301844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Establishment of a 3D printing system for bone tissue engineering scaffold fabrication and the evaluation of its controllability over macro and micro structure precision].
    Li R; Chen KL; Wang Y; Liu YS; Zhou YS; Sun YC
    Beijing Da Xue Xue Bao Yi Xue Ban; 2019 Feb; 51(1):115-119. PubMed ID: 30773555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing.
    Tamjid E; Bohlouli M; Mohammadi S; Alipour H; Nikkhah M
    J Biomed Mater Res A; 2020 Jun; 108(6):1426-1438. PubMed ID: 32134569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.
    Fairag R; Rosenzweig DH; Ramirez-Garcialuna JL; Weber MH; Haglund L
    ACS Appl Mater Interfaces; 2019 May; 11(17):15306-15315. PubMed ID: 30973708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin D
    Vu AA; Bose S
    Ann Biomed Eng; 2020 Mar; 48(3):1025-1033. PubMed ID: 31168676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.