These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 30934262)
1. Model of anomalous diffusion-absorption process in a system consisting of two different media separated by a thin membrane. Kosztołowicz T Phys Rev E; 2019 Feb; 99(2-1):022127. PubMed ID: 30934262 [TBL] [Abstract][Full Text] [Related]
2. Random walk model of subdiffusion in a system with a thin membrane. Kosztołowicz T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022102. PubMed ID: 25768453 [TBL] [Abstract][Full Text] [Related]
3. Subdiffusion equation with fractional Caputo time derivative with respect to another function in modeling transition from ordinary subdiffusion to superdiffusion. Kosztołowicz T Phys Rev E; 2023 Jun; 107(6-1):064103. PubMed ID: 37464604 [TBL] [Abstract][Full Text] [Related]
4. Subdiffusion-reaction processes with A→B reactions versus subdiffusion-reaction processes with A+B→B reactions. Kosztołowicz T; Lewandowska KD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032136. PubMed ID: 25314424 [TBL] [Abstract][Full Text] [Related]
5. Boundary conditions at a thin membrane for the normal diffusion equation which generate subdiffusion. Kosztołowicz T; Dutkiewicz A Phys Rev E; 2021 Apr; 103(4-1):042131. PubMed ID: 34005890 [TBL] [Abstract][Full Text] [Related]
6. Subdiffusion-absorption process in a system consisting of two different media. Kosztołowicz T J Chem Phys; 2017 Feb; 146(8):084114. PubMed ID: 28249429 [TBL] [Abstract][Full Text] [Related]
7. Subdiffusion in a system with thin membranes. Kosztołowicz T; Dworecki K; Lewandowska KD Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021123. PubMed ID: 23005738 [TBL] [Abstract][Full Text] [Related]
8. Continuous-time random-walk model for anomalous diffusion in expanding media. Le Vot F; Abad E; Yuste SB Phys Rev E; 2017 Sep; 96(3-1):032117. PubMed ID: 29347028 [TBL] [Abstract][Full Text] [Related]
9. Boundary conditions at a thin membrane that generate non-Markovian normal diffusion. Kosztołowicz T Phys Rev E; 2020 Aug; 102(2-1):022123. PubMed ID: 32942412 [TBL] [Abstract][Full Text] [Related]
10. Solvable continuous-time random walk model of the motion of tracer particles through porous media. Fouxon I; Holzner M Phys Rev E; 2016 Aug; 94(2-1):022132. PubMed ID: 27627271 [TBL] [Abstract][Full Text] [Related]
12. Langevin picture of anomalous diffusion processes in expanding medium. Wang X; Chen Y Phys Rev E; 2023 Feb; 107(2-1):024105. PubMed ID: 36932587 [TBL] [Abstract][Full Text] [Related]
13. Subdiffusion in a system with a partially permeable partially absorbing wall. Kosztołowicz T Phys Rev E; 2021 Feb; 103(2-1):022117. PubMed ID: 33736008 [TBL] [Abstract][Full Text] [Related]
14. Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. Abad E; Yuste SB; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031115. PubMed ID: 20365705 [TBL] [Abstract][Full Text] [Related]
15. Subdiffusion in random compressible flows. Chukbar K; Zaburdaev V Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061105. PubMed ID: 16089720 [TBL] [Abstract][Full Text] [Related]
16. Complete analytic solutions for convection-diffusion-reaction-source equations without using an inverse Laplace transform. Kim AS Sci Rep; 2020 May; 10(1):8040. PubMed ID: 32415163 [TBL] [Abstract][Full Text] [Related]
17. Boundary conditions of normal and anomalous diffusion from thermal equilibrium. Korabel N; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051113. PubMed ID: 21728496 [TBL] [Abstract][Full Text] [Related]
18. Random walks and anomalous diffusion in two-component random media. Arinstein AE; Gitterman M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021104. PubMed ID: 16196543 [TBL] [Abstract][Full Text] [Related]
19. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Chechkin AV; Gorenflo R; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046129. PubMed ID: 12443281 [TBL] [Abstract][Full Text] [Related]
20. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Chechkin AV; Gonchar VY; Gorenflo R; Korabel N; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021111. PubMed ID: 18850790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]