BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30934933)

  • 21. Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls.
    Sadkowski T; Jank M; Zwierzchowski L; Oprzadek J; Motyl T
    J Appl Genet; 2009; 50(2):109-23. PubMed ID: 19433908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-breed and multi-trait co-association analysis of meat tenderness and other meat quality traits in three French beef cattle breeds.
    Ramayo-Caldas Y; Renand G; Ballester M; Saintilan R; Rocha D
    Genet Sel Evol; 2016 Apr; 48():37. PubMed ID: 27107817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Liver transcriptome analysis reveals important factors involved in the metabolic adaptation of the transition cow.
    Ha NT; Drögemüller C; Reimer C; Schmitz-Hsu F; Bruckmaier RM; Simianer H; Gross JJ
    J Dairy Sci; 2017 Nov; 100(11):9311-9323. PubMed ID: 28865861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of selection signatures in dairy and beef cattle using high-density genomic information.
    Zhao F; McParland S; Kearney F; Du L; Berry DP
    Genet Sel Evol; 2015 Jun; 47(1):49. PubMed ID: 26089079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole blood transcriptional profiling comparison between different milk yield of Chinese Holstein cows using RNA-seq data.
    Bai X; Zheng Z; Liu B; Ji X; Bai Y; Zhang W
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):512. PubMed ID: 27557137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A breeding index to rank beef bulls for use on dairy females to maximize profit.
    Berry DP; Amer PR; Evans RD; Byrne T; Cromie AR; Hely F
    J Dairy Sci; 2019 Nov; 102(11):10056-10072. PubMed ID: 31495621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and pubertal development of F1 bulls from Hereford, Angus, Norwegian Red, Swedish Red and White, Friesian, and Wagyu sires.
    Casas E; Lunstra DD; Cundiff LV; Ford JJ
    J Anim Sci; 2007 Nov; 85(11):2904-9. PubMed ID: 17591712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA-seq transcriptome profiling of porcine lung from two pig breeds in response to
    Ni L; Song C; Wu X; Zhao X; Wang X; Li B; Gan Y
    PeerJ; 2019; 7():e7900. PubMed ID: 31656701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele.
    Takeshima SN; Miyasaka T; Matsumoto Y; Xue G; Diaz Vde L; Rogberg-Muñoz A; Giovambattista G; Ortiz M; Oltra J; Kanemaki M; Onuma M; Aida Y
    Tissue Antigens; 2015 Jan; 85(1):35-44. PubMed ID: 25430590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Birth and weaning traits in crossbred cattle from Hereford, Angus, Norwegian Red, Swedish Red and White, Wagyu, and Friesian sires.
    Casas E; Thallman RM; Cundiff LV
    J Anim Sci; 2012 Sep; 90(9):2916-20. PubMed ID: 22785167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptome profiling of longissimus lumborum in Holstein bulls and steers with different beef qualities.
    Li Y; Wang M; Li Q; Gao Y; Li Q; Li J; Cao Y
    PLoS One; 2020; 15(6):e0235218. PubMed ID: 32584890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA-Seq Analysis Identifies Differentially Expressed Genes Insubcutaneous Adipose Tissuein Qaidamford Cattle, Cattle-Yak, and Angus Cattle.
    Song C; Huang Y; Yang Z; Ma Y; Chaogetu B; Zhuoma Z; Chen H
    Animals (Basel); 2019 Dec; 9(12):. PubMed ID: 31816988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation.
    Sadkowski T; Ciecierska A; Oprządek J; Balcerek E
    BMC Genomics; 2018 Jan; 19(1):109. PubMed ID: 29390965
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake.
    Kong RS; Liang G; Chen Y; Stothard P; Guan le L
    BMC Genomics; 2016 Aug; 17():592. PubMed ID: 27506548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inbreeding trends and pedigree analysis of Irish dairy and beef cattle populations.
    Mc Parland S; Kearney JF; Rath M; Berry DP
    J Anim Sci; 2007 Feb; 85(2):322-31. PubMed ID: 17040944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative proteomics and transcriptomics analyses of livers from two different Bos taurus breeds: "Chianina and Holstein Friesian".
    Timperio AM; D'Alessandro A; Pariset L; D'Amici GM; Valentini A; Zolla L
    J Proteomics; 2009 Dec; 73(2):309-22. PubMed ID: 19782776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Puberty in beef bulls: acrosome morphology and semen quality in bulls of different breeds.
    Lunstra DD; Echternkamp SE
    J Anim Sci; 1982 Sep; 55(3):638-48. PubMed ID: 7130067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inference of population structure of purebred dairy and beef cattle using high-density genotype data.
    Kelleher MM; Berry DP; Kearney JF; McParland S; Buckley F; Purfield DC
    Animal; 2017 Jan; 11(1):15-23. PubMed ID: 27330040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Skeletal muscle transcriptional profiles in two Italian beef breeds, Chianina and Maremmana, reveal breed specific variation.
    Bongiorni S; Gruber CE; Chillemi G; Bueno S; Failla S; Moioli B; Ferrè F; Valentini A
    Mol Biol Rep; 2016 Apr; 43(4):253-68. PubMed ID: 26896938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global transcriptome analysis identifies differentially expressed genes related to lipid metabolism in Wagyu and Holstein cattle.
    Huang W; Guo Y; Du W; Zhang X; Li A; Miao X
    Sci Rep; 2017 Jul; 7(1):5278. PubMed ID: 28706200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.