These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 30934950)

  • 41. 3D Static Point Cloud Registration by Estimating Temporal Human Pose at Multiview.
    Park BS; Kim W; Kim JK; Hwang ES; Kim DW; Seo YH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-camera calibration method based on a multi-plane stereo target.
    Zhang J; Zhu J; Deng H; Chai Z; Ma M; Zhong X
    Appl Opt; 2019 Dec; 58(34):9353-9359. PubMed ID: 31873525
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extrinsic parameters calibration of multi-camera with non-overlapping fields of view using laser scanning.
    Wei Z; Zou W; Zhang G; Zhao K
    Opt Express; 2019 Jun; 27(12):16719-16737. PubMed ID: 31252894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive RGB Image Recognition by Visual-Depth Embedding.
    Cai Z; Long Y; Shao L
    IEEE Trans Image Process; 2018 Feb; ():. PubMed ID: 29994784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accurate estimation of human body orientation from RGB-D sensors.
    Liu W; Zhang Y; Tang S; Tang J; Hong R; Li J
    IEEE Trans Cybern; 2013 Oct; 43(5):1442-52. PubMed ID: 23893759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accurate calibration of a multi-camera system based on flat refractive geometry.
    Feng M; Huang S; Wang J; Yang B; Zheng T
    Appl Opt; 2017 Dec; 56(35):9724-9734. PubMed ID: 29240118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time-of-flight-assisted Kinect camera-based people detection for intuitive human robot cooperation in the surgical operating room.
    Beyl T; Nicolai P; Comparetti MD; Raczkowsky J; De Momi E; Wörn H
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1329-45. PubMed ID: 26567093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Articulated clinician detection using 3D pictorial structures on RGB-D data.
    Kadkhodamohammadi A; Gangi A; de Mathelin M; Padoy N
    Med Image Anal; 2017 Jan; 35():215-224. PubMed ID: 27449279
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RGB-'D' Saliency Detection With Pseudo Depth.
    Xiao X; Zhou Y; Gong YJ
    IEEE Trans Image Process; 2019 May; 28(5):2126-2139. PubMed ID: 30452371
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A New Approach for Combining Time-of-Flight and RGB Cameras Based on Depth-Dependent Planar Projective Transformations.
    Salinas C; Fernández R; Montes H; Armada M
    Sensors (Basel); 2015 Sep; 15(9):24615-43. PubMed ID: 26404315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust and Efficient CPU-Based RGB-D Scene Reconstruction.
    Li J; Gao W; Li H; Tang F; Wu Y
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On-Tree Mango Fruit Size Estimation Using RGB-D Images.
    Wang Z; Walsh KB; Verma B
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29182534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inverse visualization concept for RGB-D augmented C-arms.
    Wang X; Habert S; Zu Berge CS; Fallavollita P; Navab N
    Comput Biol Med; 2016 Oct; 77():135-47. PubMed ID: 27544070
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints.
    Xiao J; Stolkin R; Gao Y; Leonardis A
    IEEE Trans Cybern; 2018 Aug; 48(8):2485-2499. PubMed ID: 28885166
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Image Representations with Spatial Object-to-Object Relations for RGB-D Scene Recognition.
    Song X; Jiang S; Wang B; Chen C; Chena G
    IEEE Trans Image Process; 2019 Aug; ():. PubMed ID: 31425031
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RGB-D SLAM Using Point-Plane Constraints for Indoor Environments.
    Guo R; Peng K; Fan W; Zhai Y; Liu Y
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31213001
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Method to Compensate for the Errors Caused by Temperature in Structured-Light 3D Cameras.
    Vila O; Boada I; Raba D; Farres E
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Group geometric calibration and rectification for circular multi-camera imaging system.
    Abedi F; Yang Y; Liu Q
    Opt Express; 2018 Nov; 26(23):30596-30613. PubMed ID: 30469971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extrinsic Calibration of Camera Networks Based on Pedestrians.
    Guan J; Deboeverie F; Slembrouck M; Van Haerenborgh D; Van Cauwelaert D; Veelaert P; Philips W
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27171080
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction.
    Mersmann S; Seitel A; Erz M; Jähne B; Nickel F; Mieth M; Mehrabi A; Maier-Hein L
    Med Phys; 2013 Aug; 40(8):082701. PubMed ID: 23927355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.