These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 30935117)

  • 21. A hybrid TCN-GRU model for classifying human activities using smartphone inertial signals.
    Raja Sekaran S; Pang YH; You LZ; Yin OS
    PLoS One; 2024; 19(8):e0304655. PubMed ID: 39137226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analyzing the Effectiveness and Contribution of Each Axis of Tri-Axial Accelerometer Sensor for Accurate Activity Recognition.
    Javed AR; Sarwar MU; Khan S; Iwendi C; Mittal M; Kumar N
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human Activity Recognition Based on Residual Network and BiLSTM.
    Li Y; Wang L
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors.
    Moreira D; Barandas M; Rocha T; Alves P; Santos R; Leonardo R; Vieira P; Gamboa H
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Activity Recognition Algorithm with Physiological and Inertial Signals Fusion: Photoplethysmography, Electrodermal Activity, and Accelerometry.
    Gilmore J; Nasseri M
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793858
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning-based classification with improved time resolution for physical activities of children.
    Jang Y; Kim S; Kim K; Lee D
    PeerJ; 2018; 6():e5764. PubMed ID: 30364555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and optimization of a TensorFlow Lite deep learning neural network for human activity recognition on a smartphone.
    Adi SE; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7028-7031. PubMed ID: 34892721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network.
    Fridriksdottir E; Bonomi AG
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning.
    Nafea O; Abdul W; Muhammad G; Alsulaiman M
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Matched Filter Interpretation of CNN Classifiers with Application to HAR.
    Farag MM
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human Activity Recognition via Hybrid Deep Learning Based Model.
    Khan IU; Afzal S; Lee JW
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network.
    Chen J; Bi S; Zhang G; Cao G
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust Human Activity Recognition by Integrating Image and Accelerometer Sensor Data Using Deep Fusion Network.
    Kang J; Shin J; Shin J; Lee D; Choi A
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of deep learning for smartphone-based human activity recognition.
    Stampfler T; Elgendi M; Fletcher RR; Menon C
    Front Public Health; 2023; 11():1086671. PubMed ID: 36926170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic Extraction and Detection of Characteristic Movement Patterns in Children with ADHD Based on a Convolutional Neural Network (CNN) and Acceleration Images.
    Muñoz-Organero M; Powell L; Heller B; Harpin V; Parker J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30441774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing a novel hybrid method based on dispersion entropy and adaptive boosting algorithm for human activity recognition.
    Diykh M; Abdulla S; Deo RC; Siuly S; Ali M
    Comput Methods Programs Biomed; 2023 Feb; 229():107305. PubMed ID: 36527814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.