These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 30936014)
1. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation. Zhao X; Luo Y; Tan P; Liu M; Zhou C Int J Biol Macromol; 2019 Jul; 132():406-415. PubMed ID: 30936014 [TBL] [Abstract][Full Text] [Related]
2. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. Duan B; Gao H; He M; Zhang L ACS Appl Mater Interfaces; 2014 Nov; 6(22):19933-42. PubMed ID: 25347002 [TBL] [Abstract][Full Text] [Related]
3. Chitin-natural clay nanotubes hybrid hydrogel. Liu M; Zhang Y; Li J; Zhou C Int J Biol Macromol; 2013 Jul; 58():23-30. PubMed ID: 23535366 [TBL] [Abstract][Full Text] [Related]
4. Chitosan composite hydrogels reinforced with natural clay nanotubes. Huang B; Liu M; Zhou C Carbohydr Polym; 2017 Nov; 175():689-698. PubMed ID: 28917918 [TBL] [Abstract][Full Text] [Related]
5. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Huang B; Liu M; Long Z; Shen Y; Zhou C Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):303-310. PubMed ID: 27770895 [TBL] [Abstract][Full Text] [Related]
6. TiO Wu J; He Y; Zhou L; Yin X; Zhang L; Chen J; Li Z; Bai Y ACS Appl Mater Interfaces; 2021 Mar; 13(9):11320-11331. PubMed ID: 33625835 [TBL] [Abstract][Full Text] [Related]
7. Development of halloysite nanotube/carboxylated-cellulose nanocrystal-reinforced and ionically-crosslinked polysaccharide hydrogels. Kumar A; Matari IAI; Choi H; Kim A; Suk YJ; Kim JY; Han SS Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109983. PubMed ID: 31499997 [TBL] [Abstract][Full Text] [Related]
8. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Liu M; Dai L; Shi H; Xiong S; Zhou C Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():700-712. PubMed ID: 25686999 [TBL] [Abstract][Full Text] [Related]
9. Janus hybrid sustainable all-cellulose nanofiber sponge for oil-water separation. Agaba A; Marriam I; Tebyetekerwa M; Yuanhao W Int J Biol Macromol; 2021 Aug; 185():997-1004. PubMed ID: 34237368 [TBL] [Abstract][Full Text] [Related]
10. Inside-out templating: A strategy to decorate helical carbon nanotubes and 2D MoS Worajittiphon P; Majan P; Wangkawong K; Somsunan R; Jantrawut P; Panraksa P; Chaiwarit T; Srithep Y; Sommano SR; Jantanasakulwong K; Rachtanapun P Int J Biol Macromol; 2024 Jul; 273(Pt 2):133119. PubMed ID: 38880452 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes. Ghaderi-Ghahfarrokhi M; Haddadi-Asl V; Zargarian SS J Biomed Mater Res A; 2018 May; 106(5):1276-1287. PubMed ID: 29314595 [TBL] [Abstract][Full Text] [Related]
12. Preparation of β-Cyclodextrin Multi-Decorated Halloysite Nanotubes as a Catalyst and Nanoadsorbent for Dye Removal. Cao XT; Showkat AM; Kim DW; Jeong YT; Kim JS; Lim KT J Nanosci Nanotechnol; 2015 Nov; 15(11):8617-21. PubMed ID: 26726562 [TBL] [Abstract][Full Text] [Related]
13. Investigation of Amphiphilic Polypeptoid-Functionalized Halloysite Nanotubes as Emulsion Stabilizer for Oil Spill Remediation. Yu T; Swientoniewski LT; Omarova M; Li MC; Negulescu II; Jiang N; Darvish OA; Panchal A; Blake DA; Wu Q; Lvov YM; John VT; Zhang D ACS Appl Mater Interfaces; 2019 Aug; 11(31):27944-27953. PubMed ID: 31306577 [TBL] [Abstract][Full Text] [Related]
14. A Novel Freeze-Drying-Free Strategy to Fabricate a Biobased Tough Aerogel for Separation of Oil/Water Mixtures. Li K; Luo Q; Xu J; Li K; Zhang W; Liu L; Ma J; Zhang H J Agric Food Chem; 2020 Mar; 68(12):3779-3785. PubMed ID: 32142264 [TBL] [Abstract][Full Text] [Related]
16. Surface grafting of fluorescent polymers on halloysite nanotubes through metal-free light-induced controlled polymerization: Preparation, characterization and biological imaging. Chen J; Cui Y; Liu M; Huang H; Deng F; Mao L; Wen Y; Tian J; Zhang X; Wei Y Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110804. PubMed ID: 32279750 [TBL] [Abstract][Full Text] [Related]
17. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water. Wang J; Geng G Mar Pollut Bull; 2015 Aug; 97(1-2):118-124. PubMed ID: 26092604 [TBL] [Abstract][Full Text] [Related]
18. Poly(dimethylsiloxane)/graphene oxide composite sponge: a robust and reusable adsorbent for efficient oil/water separation. Zhao J; Chen H; Ye H; Zhang B; Xu L Soft Matter; 2019 Dec; 15(45):9224-9232. PubMed ID: 31647491 [TBL] [Abstract][Full Text] [Related]
19. Surface Wettability of Cellulose Sponges on Effective Oil Uptake. Phomrak S; Phisalaphong M; Zhang Newby BM ACS Appl Bio Mater; 2022 Jun; 5(6):2622-2632. PubMed ID: 35543617 [TBL] [Abstract][Full Text] [Related]
20. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery. Periasamy AP; Wu WP; Ravindranath R; Roy P; Lin GL; Chang HT Mar Pollut Bull; 2017 Jan; 114(2):888-895. PubMed ID: 27863883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]