These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30936113)

  • 21. Construct design for CRISPR/Cas-based genome editing in plants.
    Hassan MM; Zhang Y; Yuan G; De K; Chen JG; Muchero W; Tuskan GA; Qi Y; Yang X
    Trends Plant Sci; 2021 Nov; 26(11):1133-1152. PubMed ID: 34340931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Throughput Gene Mutagenesis Screening Using Base Editing.
    Després PC; Dubé AK; Yachie N; Landry CR
    Methods Mol Biol; 2022; 2477():331-348. PubMed ID: 35524126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pgRNAFinder: a web-based tool to design distance independent paired-gRNA.
    Xiong Y; Xie X; Wang Y; Ma W; Liang P; Songyang Z; Dai Z
    Bioinformatics; 2017 Nov; 33(22):3642-3644. PubMed ID: 28961776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo CRISPR editing with no detectable genome-wide off-target mutations.
    Akcakaya P; Bobbin ML; Guo JA; Malagon-Lopez J; Clement K; Garcia SP; Fellows MD; Porritt MJ; Firth MA; Carreras A; Baccega T; Seeliger F; Bjursell M; Tsai SQ; Nguyen NT; Nitsch R; Mayr LM; Pinello L; Bohlooly-Y M; Aryee MJ; Maresca M; Joung JK
    Nature; 2018 Sep; 561(7723):416-419. PubMed ID: 30209390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise mutagenesis in zebrafish using cytosine base editors.
    Rosello M; Serafini M; Concordet JP; Del Bene F
    Nat Protoc; 2023 Sep; 18(9):2794-2813. PubMed ID: 37495752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG.
    Yu SY; Birkenshaw A; Thomson T; Carlaw T; Zhang LH; Ross CJD
    CRISPR J; 2022 Apr; 5(2):187-202. PubMed ID: 35238621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disease modeling by efficient genome editing using a near PAM-less base editor in vivo.
    Rosello M; Serafini M; Mignani L; Finazzi D; Giovannangeli C; Mione MC; Concordet JP; Del Bene F
    Nat Commun; 2022 Jun; 13(1):3435. PubMed ID: 35701478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parallel engineering and activity profiling of a base editor system.
    Fong JHC; Chu HY; Zhou P; Wong ASL
    Cell Syst; 2023 May; 14(5):392-403.e4. PubMed ID: 37164010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae.
    Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J
    Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human genetic diversity alters off-target outcomes of therapeutic gene editing.
    Cancellieri S; Zeng J; Lin LY; Tognon M; Nguyen MA; Lin J; Bombieri N; Maitland SA; Ciuculescu MF; Katta V; Tsai SQ; Armant M; Wolfe SA; Giugno R; Bauer DE; Pinello L
    Nat Genet; 2023 Jan; 55(1):34-43. PubMed ID: 36522432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of cytosine base editors and development of the BEable-GPS database for targeting pathogenic SNVs.
    Wang Y; Gao R; Wu J; Xiong YC; Wei J; Zhang S; Yang B; Chen J; Yang L
    Genome Biol; 2019 Oct; 20(1):218. PubMed ID: 31647030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Web-based design and analysis tools for CRISPR base editing.
    Hwang GH; Park J; Lim K; Kim S; Yu J; Yu E; Kim ST; Eils R; Kim JS; Bae S
    BMC Bioinformatics; 2018 Dec; 19(1):542. PubMed ID: 30587106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BEtarget: A versatile web-based tool to design guide RNAs for base editing in plants.
    Xie X; Li F; Tan X; Zeng D; Liu W; Zeng W; Zhu Q; Liu YG
    Comput Struct Biotechnol J; 2022; 20():4009-4014. PubMed ID: 35983232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms.
    Mendoza BJ; Trinh CT
    Bioinformatics; 2018 Jan; 34(1):16-23. PubMed ID: 28968798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CROPSR: an automated platform for complex genome-wide CRISPR gRNA design and validation.
    Müller Paul H; Istanto DD; Heldenbrand J; Hudson ME
    BMC Bioinformatics; 2022 Feb; 23(1):74. PubMed ID: 35172714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.