These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
556 related articles for article (PubMed ID: 30936373)
1. Crystal Structure of VapBC-1 from Nontypeable Haemophilus influenzae and the Effect of PIN Domain Mutations on Survival during Infection. Molinaro AL; Kashipathy MM; Lovell S; Battaile KP; Coussens NP; Shen M; Daines DA J Bacteriol; 2019 Jun; 201(12):. PubMed ID: 30936373 [TBL] [Abstract][Full Text] [Related]
2. VapC-1 of nontypeable Haemophilus influenzae is a ribonuclease. Daines DA; Wu MH; Yuan SY J Bacteriol; 2007 Jul; 189(14):5041-8. PubMed ID: 17496075 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli. Guo Y; Yao J; Sun C; Wen Z; Wang X Toxins (Basel); 2016 Jul; 8(7):. PubMed ID: 27376329 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the vapBC-1 toxin-antitoxin locus in nontypeable Haemophilus influenzae. Cline SD; Saleem S; Daines DA PLoS One; 2012; 7(3):e32199. PubMed ID: 22427824 [TBL] [Abstract][Full Text] [Related]
5. Structural Determinants for Antitoxin Identity and Insulation of Cross Talk between Homologous Toxin-Antitoxin Systems. Walling LR; Butler JS J Bacteriol; 2016 Dec; 198(24):3287-3295. PubMed ID: 27672196 [TBL] [Abstract][Full Text] [Related]
6. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. Lopes AP; Lopes LM; Fraga TR; Chura-Chambi RM; Sanson AL; Cheng E; Nakajima E; Morganti L; Martins EA PLoS One; 2014; 9(7):e101678. PubMed ID: 25047537 [TBL] [Abstract][Full Text] [Related]
7. Toxin-antitoxin loci vapBC-1 and vapXD contribute to survival and virulence in nontypeable Haemophilus influenzae. Ren D; Walker AN; Daines DA BMC Microbiol; 2012 Nov; 12():263. PubMed ID: 23157645 [TBL] [Abstract][Full Text] [Related]
8. Homologous VapC Toxins Inhibit Translation and Cell Growth by Sequence-Specific Cleavage of tRNA Walling LR; Butler JS J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29109187 [TBL] [Abstract][Full Text] [Related]
9. The vapBC operon from Mycobacterium smegmatis is an autoregulated toxin-antitoxin module that controls growth via inhibition of translation. Robson J; McKenzie JL; Cursons R; Cook GM; Arcus VL J Mol Biol; 2009 Jul; 390(3):353-67. PubMed ID: 19445953 [TBL] [Abstract][Full Text] [Related]
10. Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: insights into unique binding and antibiotic peptides. Kang SM; Kim DH; Lee KY; Park SJ; Yoon HJ; Lee SJ; Im H; Lee BJ Nucleic Acids Res; 2017 Aug; 45(14):8564-8580. PubMed ID: 28575388 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the VapBC-15 complex from Mycobacterium tuberculosis reveals a two-metal ion dependent PIN-domain ribonuclease and a variable mode of toxin-antitoxin assembly. Das U; Pogenberg V; Subhramanyam UK; Wilmanns M; Gourinath S; Srinivasan A J Struct Biol; 2014 Dec; 188(3):249-58. PubMed ID: 25450593 [TBL] [Abstract][Full Text] [Related]
12. The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Arcus VL; McKenzie JL; Robson J; Cook GM Protein Eng Des Sel; 2011 Jan; 24(1-2):33-40. PubMed ID: 21036780 [TBL] [Abstract][Full Text] [Related]
13. Analysis of non-typeable Haemophilous influenzae VapC1 mutations reveals structural features required for toxicity and flexibility in the active site. Hamilton B; Manzella A; Schmidt K; DiMarco V; Butler JS PLoS One; 2014; 9(11):e112921. PubMed ID: 25391136 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of a nontypeable Haemophilus influenzae putative toxin-antitoxin locus. Daines DA; Jarisch J; Smith AL BMC Microbiol; 2004 Jul; 4():30. PubMed ID: 15274747 [TBL] [Abstract][Full Text] [Related]
15. Structure-function analysis of VapB4 antitoxin identifies critical features of a minimal VapC4 toxin-binding module. Jin G; Pavelka MS; Butler JS J Bacteriol; 2015 Apr; 197(7):1197-207. PubMed ID: 25622615 [TBL] [Abstract][Full Text] [Related]
16. Structural and Functional Study of the Kang SM; Jin C; Kim DH; Lee Y; Lee BJ J Med Chem; 2020 Nov; 63(22):13669-13679. PubMed ID: 33146528 [No Abstract] [Full Text] [Related]
17. Discovery of Small-Molecule VapC1 Nuclease Inhibitors by Virtual Screening and Scaffold Hopping from an Atomic Structure Revealing Protein-Protein Interactions with a Native VapB1 Inhibitor. Sun H; Coussens NP; Danchik C; Wachsmuth LM; Henderson MJ; Patnaik S; Hall MD; Molinaro AL; Daines DA; Shen M J Chem Inf Model; 2022 Mar; 62(5):1249-1258. PubMed ID: 35103473 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of the Rv0301-Rv0300 VapBC-3 toxin-antitoxin complex from M. tuberculosis reveals a Mg²⁺ ion in the active site and a putative RNA-binding site. Min AB; Miallau L; Sawaya MR; Habel J; Cascio D; Eisenberg D Protein Sci; 2012 Nov; 21(11):1754-67. PubMed ID: 23011806 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of Mycobacterium tuberculosis VapC20 toxin and its interactions with cognate antitoxin, VapB20, suggest a model for toxin-antitoxin assembly. Deep A; Kaundal S; Agarwal S; Singh R; Thakur KG FEBS J; 2017 Dec; 284(23):4066-4082. PubMed ID: 28986943 [TBL] [Abstract][Full Text] [Related]
20. Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: insights into VapB46-DNA binding. Roy M; Kundu A; Bhunia A; Das Gupta S; De S; Das AK FEBS J; 2019 Mar; 286(6):1174-1190. PubMed ID: 30576065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]