These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake wetland. He Y; Hu W; Ma D; Lan H; Yang Y; Gao Y Can J Microbiol; 2017 Jul; 63(7):573-582. PubMed ID: 28249125 [TBL] [Abstract][Full Text] [Related]
3. Sediment Ammonia-Oxidizing Microorganisms in Two Plateau Freshwater Lakes at Different Trophic States. Yang Y; Zhang J; Zhao Q; Zhou Q; Li N; Wang Y; Xie S; Liu Y Microb Ecol; 2016 Feb; 71(2):257-65. PubMed ID: 26111964 [TBL] [Abstract][Full Text] [Related]
4. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Li M; Cao H; Hong Y; Gu JD Appl Microbiol Biotechnol; 2011 Feb; 89(4):1243-54. PubMed ID: 20953601 [TBL] [Abstract][Full Text] [Related]
5. Differential distribution patterns of ammonia-oxidizing archaea and bacteria in acidic soils of Nanling National Nature Reserve forests in subtropical China. Gan XH; Zhang FQ; Gu JD; Guo YD; Li ZQ; Zhang WQ; Xu XY; Zhou Y; Wen XY; Xie GG; Wang YF Antonie Van Leeuwenhoek; 2016 Feb; 109(2):237-51. PubMed ID: 26626057 [TBL] [Abstract][Full Text] [Related]
6. Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system. Yan J; Haaijer SC; Op den Camp HJ; van Niftrik L; Stahl DA; Könneke M; Rush D; Sinninghe Damsté JS; Hu YY; Jetten MS Environ Microbiol; 2012 Dec; 14(12):3146-58. PubMed ID: 23057688 [TBL] [Abstract][Full Text] [Related]
7. Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria. Liu S; Hu B; He Z; Zhang B; Tian G; Zheng P; Fang F Appl Microbiol Biotechnol; 2015 Oct; 99(20):8587-96. PubMed ID: 26099334 [TBL] [Abstract][Full Text] [Related]
8. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487 [TBL] [Abstract][Full Text] [Related]
9. Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. French E; Kozlowski JA; Mukherjee M; Bullerjahn G; Bollmann A Appl Environ Microbiol; 2012 Aug; 78(16):5773-80. PubMed ID: 22685142 [TBL] [Abstract][Full Text] [Related]
10. Faunal Burrows Alter the Diversity, Abundance, and Structure of AOA, AOB, Anammox and n-Damo Communities in Coastal Mangrove Sediments. Chen J; Gu JD Microb Ecol; 2017 Jul; 74(1):140-156. PubMed ID: 28130576 [TBL] [Abstract][Full Text] [Related]
11. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Hou J; Song C; Cao X; Zhou Y Water Res; 2013 May; 47(7):2285-96. PubMed ID: 23473400 [TBL] [Abstract][Full Text] [Related]
12. Different nutrient levels, rather than seasonal changes, significantly affected the spatiotemporal dynamic changes of ammonia-oxidizing microorganisms in Lake Taihu. Liu TT; Yang H World J Microbiol Biotechnol; 2021 May; 37(6):91. PubMed ID: 33939019 [TBL] [Abstract][Full Text] [Related]
13. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. Zhang LM; Hu HW; Shen JP; He JZ ISME J; 2012 May; 6(5):1032-45. PubMed ID: 22134644 [TBL] [Abstract][Full Text] [Related]
14. Competition between Ammonia-Oxidizing Archaea and Bacteria from Freshwater Environments. French E; Kozlowski JA; Bollmann A Appl Environ Microbiol; 2021 Sep; 87(20):e0103821. PubMed ID: 34347515 [TBL] [Abstract][Full Text] [Related]
15. Selective Enrichment of Nitrososphaera viennensis-Like Ammonia-Oxidizing Archaea over Ammonia-Oxidizing Bacteria from Drinking Water Biofilms. Woo Y; Cruz MC; Wuertz S Microbiol Spectr; 2022 Dec; 10(6):e0184522. PubMed ID: 36445127 [TBL] [Abstract][Full Text] [Related]
16. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. He JZ; Shen JP; Zhang LM; Zhu YG; Zheng YM; Xu MG; Di H Environ Microbiol; 2007 Sep; 9(9):2364-74. PubMed ID: 17686032 [TBL] [Abstract][Full Text] [Related]
17. Occurrence and abundance of ammonia-oxidizing archaea and bacteria from the surface to below the water table, in deep soil, and their contributions to nitrification. Zheng L; Zhao X; Zhu G; Yang W; Xia C; Xu T Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28523826 [TBL] [Abstract][Full Text] [Related]
18. Ammonia-oxidizing bacteria dominates over ammonia-oxidizing archaea in a saline nitrification reactor under low DO and high nitrogen loading. Ye L; Zhang T Biotechnol Bioeng; 2011 Nov; 108(11):2544-52. PubMed ID: 21618465 [TBL] [Abstract][Full Text] [Related]
19. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. Taylor AE; Giguere AT; Zoebelein CM; Myrold DD; Bottomley PJ ISME J; 2017 Apr; 11(4):896-908. PubMed ID: 27996979 [TBL] [Abstract][Full Text] [Related]
20. Environmental factors shaping the community structure of ammonia-oxidizing bacteria and archaea in sugarcane field soil. Tago K; Okubo T; Shimomura Y; Kikuchi Y; Hori T; Nagayama A; Hayatsu M Microbes Environ; 2015; 30(1):21-8. PubMed ID: 25736866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]